Detectors for e⁺e⁻ Linear Colliders

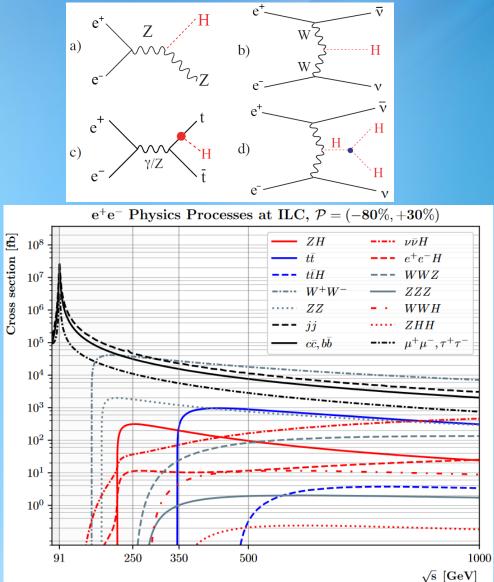
Andy White

(On behalf of the Americas Linear Collider Committee)

UNIVERSITY OF TEXAS 🖟 ARLINGTON

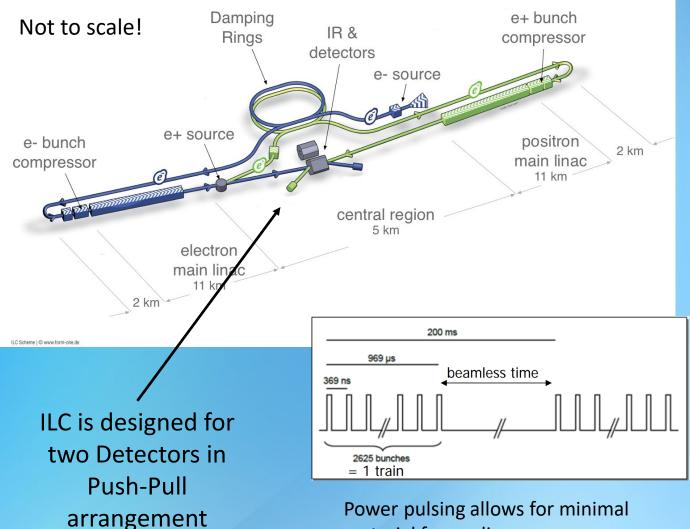
P5 Meeting, BNL, April 13, 2023

With thanks to ILD, SiD and C³ colleagues for materials provided!

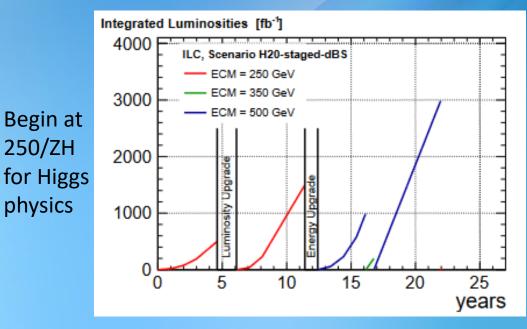

A. White P5 BNL

ILC Physics – major processes to be studied

Energy	Reaction	Physics Goal
Z Higgs stage	$e^+ e^- \rightarrow Z h$ $e^+ e^- \rightarrow W W$	precision Higgs couplings precision W couplings
	$e^+ e^- \rightarrow f \bar{f}$	precision search for new physics
Energy	${\rm e^+}~{\rm e^-} \rightarrow \nu~\bar{\nu}$ h	precision Higgs couplings
upgrade	$e^+ e^- \rightarrow t \bar{t}$	top quark couplings
stage	$\mathrm{e^+}~\mathrm{e^-} ightarrow \mathrm{t}~\overline{\mathrm{t}}~\mathrm{h}$	top Yukawa coupling
	$e^+ e^- \rightarrow Z h h$	Higgs self coupling
	$e^+ e^- \rightarrow \widetilde{\chi} \ \widetilde{\chi}$	searches for new particles
	$\mathrm{e^+}~\mathrm{e^-} \rightarrow \nu~\bar{\nu}~\mathrm{V}~\mathrm{V}$	composite Higgs sector
t $\bar{\rm t}$ threshold	$\mathrm{e^+}~\mathrm{e^-} ightarrow \mathrm{t}~\overline{\mathrm{t}}$	top quark mass from threshold
Z pole	$\mathrm{e^+}~\mathrm{e^-} \rightarrow \mathrm{Z}$	ultra-precision electroweak
W W threshold	$\mathrm{e^+}~\mathrm{e^-} \rightarrow \mathrm{W}~\mathrm{W}$	W mass from threshold
TeV upgrade	${\rm e^+}~{\rm e^-} \rightarrow \nu~\bar{\nu}$ h h	Higg self-coupling
stage	$\mathrm{e^+}~\mathrm{e^-} \rightarrow \mathrm{H^+}~\mathrm{H^-},~\mathrm{A}~\mathrm{H}$	extended Higgs sector
	$\mathrm{e}^+ \; \mathrm{e}^- ightarrow \widetilde{\ell} \; \tilde{\widetilde{\ell}}, \widetilde{\chi}^\pm \; \widetilde{\chi}^\mp, \widetilde{\chi}^0_2 \; \widetilde{\chi}^0_1$	searches for new particles, including SUSY


ILC covers the entire range of Higgs physics, as well as top, new physics searches, and Z and W.

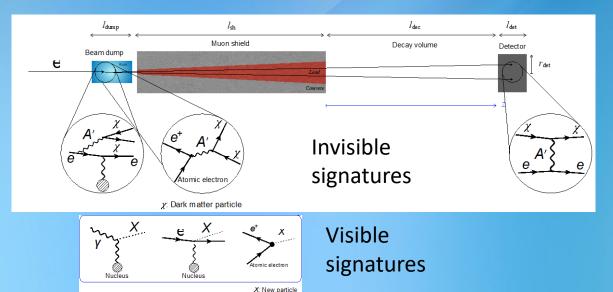
ILC Snowmass report:arXiv:2203.07622


4/12/2023

The ILC Accelerator

Power pulsing allows for minimal material for cooling

"H20" ILC running scenario


ILC parameters

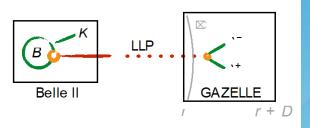
COM energy Z-pole – 1000 GeV (and maybe higher) Polarization e^{-} 80%, e^{+} 30% Repetition frequency 5 Hz Bunches per train 1312/2625 Linac bunch interval 554 ns (initial) Interaction rate ~1 Hz for $e+e- \rightarrow ff$ Site AC Power 111 MW (250 GeV)

ILC Experiments away from the IP

See also: ILCX workshop

Electron and *positron* **beam dumps:** $N_{EOT} = 4 \times 10^{21}$ /year

Secondary beam lines:


Light-shining-through-wall Requires 1-10 MeV photon beam 10¹⁷ γ/s Strong QED, using laser on beam, astrophysics, pathway to γ-γ collider

LUXE-like, optical dumps for ALP searches

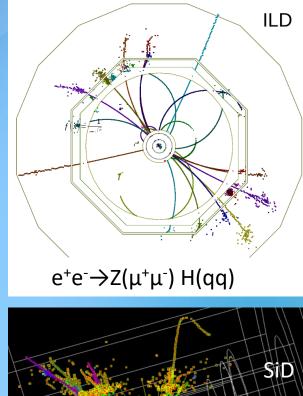
Far forward detectors:

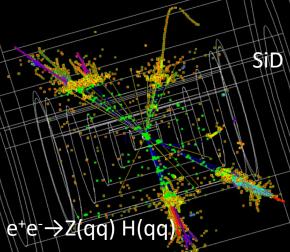
Off-axis detector to capture long-lived particles

Belle II study found little gain, as acceptance drops with distance. ILC has increased boost compared to Belle II → larger rate in FD Beam structure allows direct correlation of events in ND <-> FD

Why Experiments at an e⁺e⁻ Linear Collider?

Clean collisions of elementary particles at precise energies.


Energy range extendable – full Higgs physics coverage

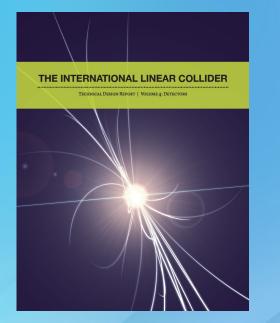

Polarization for e⁻ and e⁺ to optimize signal rates and background suppression

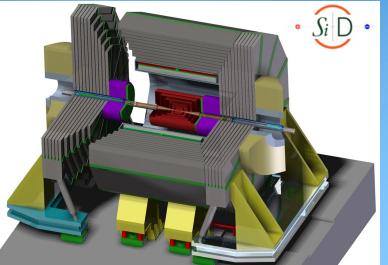
No pile-up as in hadron collider experiments (Expect ~1 hadronic interaction per bunch train) No trigger needed – record all events

Power pulsing possible – reduced material budget

Potential detector upgrade paths using new technologies

Brief history of ILC Detectors


Initial concepts – early '90s


LOIs 2009 (3 Concepts)

ILD and SiD validated by International Detector Advisory Group

ILC TDR 2013 – inc. ILD and SiD DBDs

2013

SiD and ILD are typical collider detectors

October 20, 2021 Updating the SiD Detector concept

M. Breidenbach and T. Markiewicz SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Mendo Park, CA, USA

J.E. Brau Department of Physics, University of Oregon, Eugene, OR 97403, USA

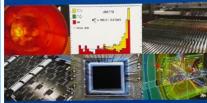
> P. Burrows Department of Physics, Oxford University, Oxford, UK M. Stanitzki

J. Strube inversity of Oregon, Institute for Fundamental Science, Eugene, OR 97403-5203

> A.P. White ersity of Texas Arlington, Arlington, TX 76019, USA

The SD Dector is now of two selectors designs for the future literational Linear Collifer (LG) and the arre validation in 2023 ED Statures a compact, one contantional designs for provides many states and the measurements, and meaning the sole is a selection of the sole of the sole

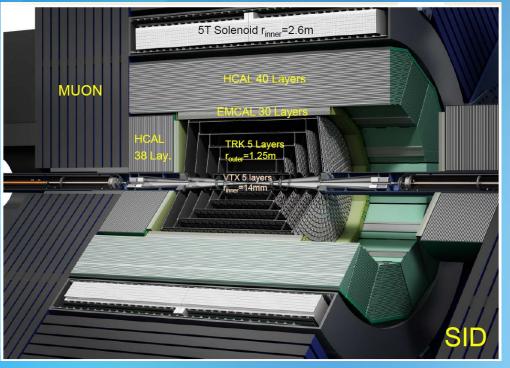
L INTRODUCTION down the front-ends (power-pulsing). This reduces the average power consumption by roughly a factor of 100.


proposed e⁴ collider at the energy fundar. The ILU is a 20 kmow given measurement of the state of the stat

2020

DESY 20-034 - KEK Preprint 2019-57

INTERIM DESIGN REPORT 2020


The International Large Detector ILD Concept Group

4/12/2023

SiD Detector Baseline

Physics Process	Measured Quantity	<u>Critical</u> <u>System</u>	<u>Critical Detector</u> <u>Characteristic</u>	Required Performance
$ \begin{array}{c} H \rightarrow b\overline{b}, c\overline{c}, \\ gg, \tau\tau \\ b\overline{b} \end{array} $	Higgs branching fractions b quark charge asymmetry	Vertex Detector	Impact parameter ⇒ Flavor tag	$\delta_b \sim 5 \mu m \oplus 10 \mu m / (p \sin^{3/2} \theta)$
$ZH \rightarrow \ell^* \ell^* X$ $\mu^+ \mu^- \gamma$ $ZH + H \nu \overline{\nu}$ $\rightarrow \mu^+ \mu^- X$	Higgs Recoil Mass Lumin Weighted E _{cm} BR (H →μμ)	Tracker	Charge particle momentum resolution, $\sigma(p_t)/p_t^2$ \Rightarrow Recoil mass	$\sigma(p_t) / p_t^2 \sim few \times 10^{-5} GeV^{-1}$
ZHH $ZH \rightarrow q\overline{q}b\overline{b}$ $ZH \rightarrow ZWW^*$ $\nu\overline{\nu}W^+W^-$	Triple Higgs Coupling Higgs Mass BR ($H \rightarrow WW^*$) $\sigma(e^+e^- \rightarrow \nu\nu W^+W^-)$	Tracker & Calorimeter	Jet Energy Resolution, σ _E /E ⇒ Di-jet Mass Res.	~3% for $E_{jet} > 100 \text{ GeV}$ $30\% / \sqrt{E_{jet}}$ for $E_{jet} < 100 \text{ GeV}$
SUSY, eg. $\tilde{\mu}_{\text{decay}}$	$ ilde{\mu}_{ ext{mass}}$	Tracker, Calorimeter	Momentum resolution, Hermiticity ⇒ Event Reconstruction	Maximal solid angle coverage

A compact, cost-constrained detector designed to make precision measurements and be sensitive to a wide range of new phenomena.


Robust **silicon vertexing and tracking** system – excellent momentum resolution, live for single bunch crossings.

Highly segmented "tracking" calorimeters optimized for Particle Flow.

Compact design with 5T field.

Detector is designed for rapid push-pull operation.

ILD Detector Design

B field 3.5T TPC for Main Tracking Overall detector concept optimized for Particle Flow

Detector design requirements

- Detector design should be able to do excellent physics in a cost effective way.
 : the physics we know is there, may be there, and new unexpected physics
 - Very good **vertexing** measurement $\sigma_{\rm b}$ =5 \oplus 10/(p $\beta \sin^{3/2}\theta$) μ m
- Excellent **momentum** measurement

$$\sigma(1/p_{T}) = 2 \times 10^{-5} \,\text{GeV}^{-1} \oplus 10^{-3} / (p_{T} \sin \theta)$$

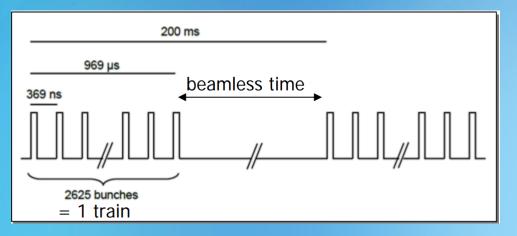
Good **electromagnetic energy** measurement.

 $\sigma_{\rm E}/E \approx 15\%/\sqrt{E} \text{ (GeV)} \oplus 1\%$

The physics demands **hermeticity** and the physics reach will be significantly greater with state-of-the art **particle flow**

• Close to 4π steradians.

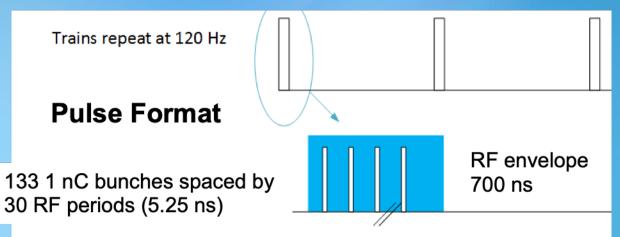
 $\sigma_{E_{iet}}/E_{jet} \approx 3 - 4\%$ (W, Z separation)


- Bubble chamber like track reconstruction.
- An integrated detector design.
 - Calorimetry designed for resolving individual particles.

Both ILD and SiD designs have been simulated in detail – ILC physics studies are based on full simulation data.

Design Considerations for C³ (Cool Copper Collider)

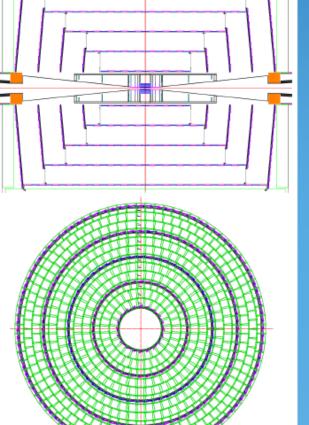
ILC timing structure

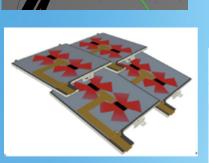


1 ms long bunch trains at 5 Hz 308ns spacing

ILC/C³ timing structure: Fraction of a percent duty cycle

- **Power pulsing possible**, significantly reduce heat load
 - Factor of 50-100 power saving for FE analog power
 - Significantly reduction for the material budget

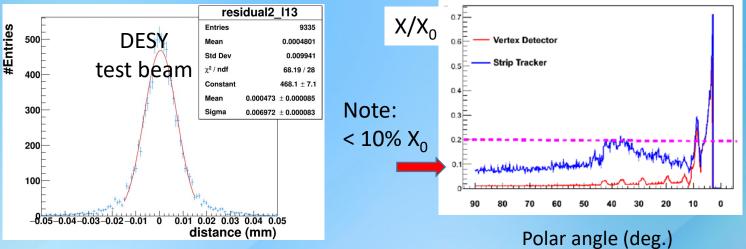



Experience from CLIC shows that SiD will be able to deliver C³ physics with only incremental changes.

Detector requirements for C³ are essentially the same as for ILC

An ILC-like detector overall design and ongoing optimizations are viable for operation at C³.

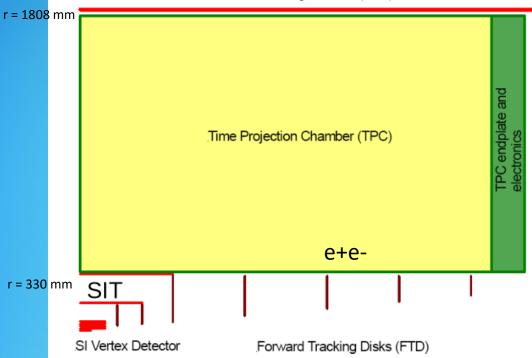
SiD Silicon (Strip) Tracker



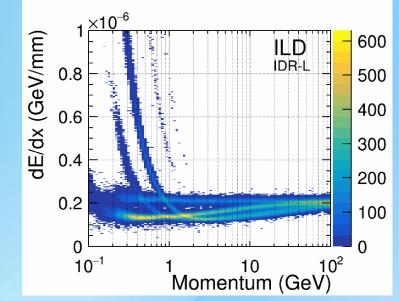
Now exploring MAPS for the main SiD tracker

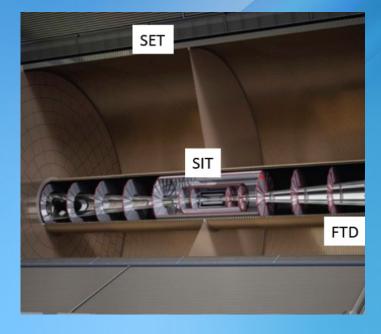
Baseline

- All Silicon Tracker
 - Using Silicon micro-strips
 - 25 µm pitch / 50 µm readout
 - v2 sensor prototype July 2017*
- 5 barrel layers / 4 disks
- Tracking unified with vertex detector
 - 10 layers in barrel
- Gas-cooled
- Material budget < 20% X₀ in the active region
- Readout using KPiX ASIC
 - Same readout as ECAL
 - Bump-bonded directly to the module


Single point resolution 7µm

4/12/2023


Main Tracker: TPC ILD Tracking


External tracking detector (SET)

TPC Readout options: GEM, Micromegas, Pixel Pixel readout for the TPC is a promising research area for ILD that needs targeted R&D support

3 x10⁹ volume pixels.
224 points per track.
Single-point resolution
50 - 100 μm r-phi,
400 μm r-z

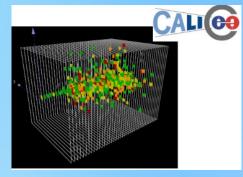
TPC offers dE/dx for particle ID and measurement of inflight decays

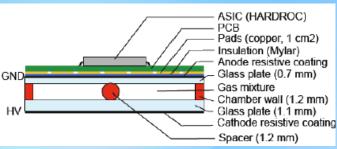
4/12/2023

ILD Calorimetry Technologies Build on studies by CALICE

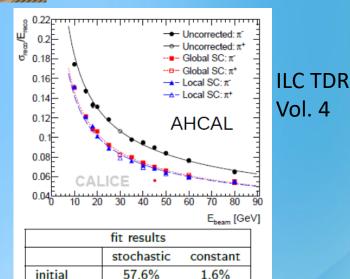
• ECAL (24 X $_{\circ}$: 20 x 0.6 X $_{\circ}$ + 10 x 1.2 X $_{\circ}$)


- Silicon-W
- transverse cell-size 5mm X 5mm
- Scintillator-W with SiPM readout
- 5mm X 45 mm X 2mm strips
- (Digital: MAPS)


• HCAL


- Analog : Scintillator + Stainless Steel.
- Tiles with Si-PM readout
- 3mm Sc, 3cm X 3cm.
- Digital/Semi-Digital : Gas + Stainless Steel.
- Glass RPCs or MPGDs, 1cm X 1cm

SDHCAL



2m Prototype for SiW-ECAL (LLR)

45.8%

44.3%

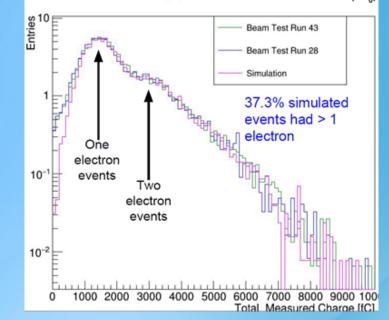
global SC

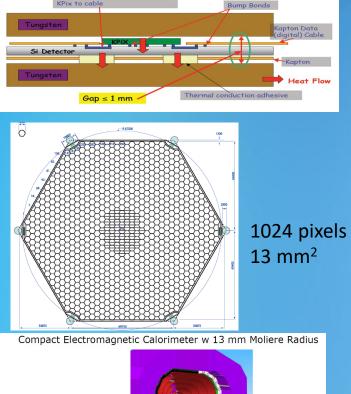
local SC

4/12/2023

1.6%

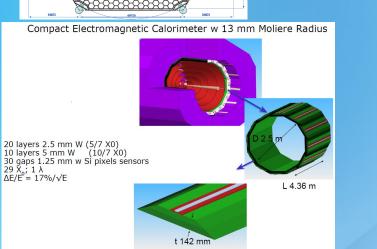
1.8%

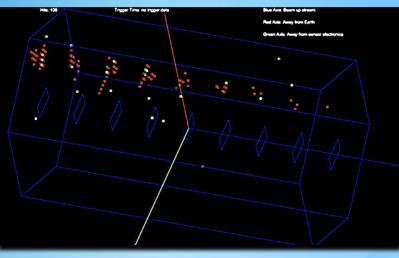

SiD Electromagnetic Calorimeter



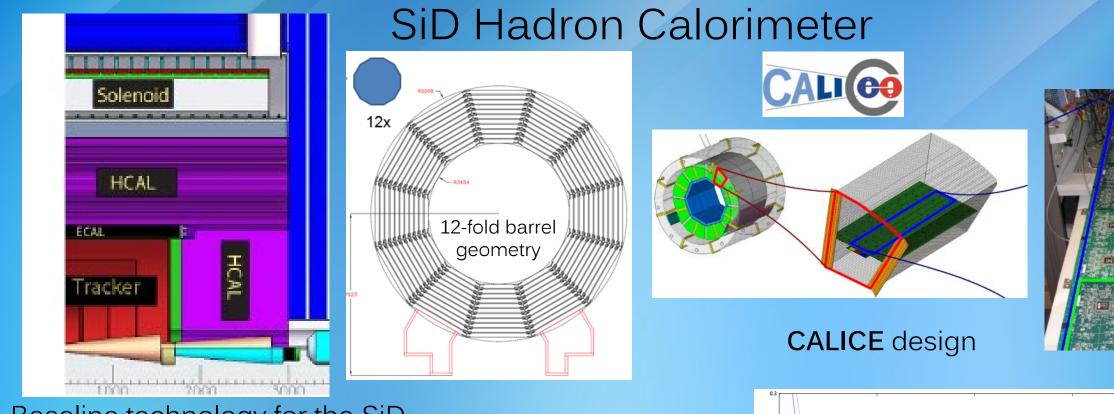
Beam tests,9-layers, SLAC

Total Measured Charge per Cleaned or Simulated Electron Events (6X,)


Metallization on detector from

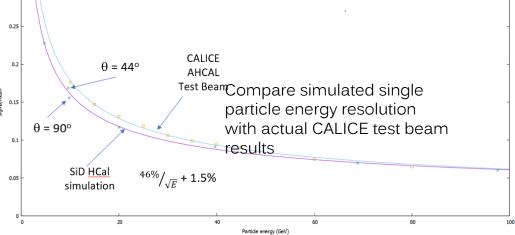

Highly granular "imaging" calorimetry essential for ILC physics program:

- Particle id/reconstruction
- Tracking charged particles
- Integral part of Particle Flow detector design

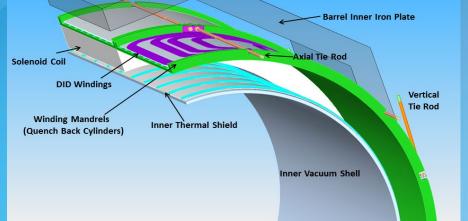

Baseline design: Silicon/Tungsten

Single electron event

4/12/2023


Baseline technology for the SiD HCal is Scintillator/SiPM/Steel Similar issues for CMS HGCAL

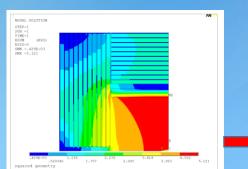
Active layer thickness = 7.383 mm

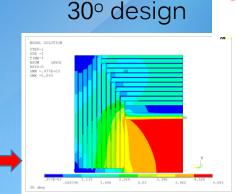

4/12/2023

Electronics height: 17mm max Flexlead on Reflector Foils 0.8mm connector Robust Interface Polyimide Foil DIF. CALIB and POWER UV LED mezzanine cards nonabsorbe material 5.4mn in mm, not in sca SPIROC2 in cutout Central Interface Board-Cooling Pipe CIB (1.7mm thick) HBU, 0.9mm thick Tile with SiPM Cassette Bottom Plate (Printed Circuit Board) CIB socket (~2.4mm) (Steel, 0.5mm thick)

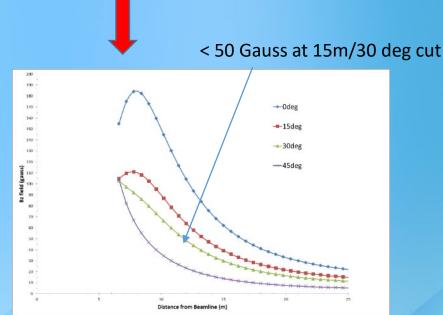
SiD Solenoid

Baseline CMS conductor



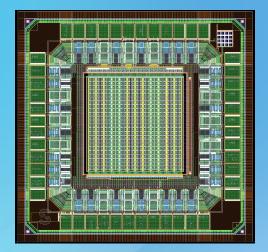

Early start on coil development is critical for both SiD and ILD – no current producer of CMSstyle conductor - potential showstopper!

Conclusions from recent CERN Magnet Workshop


- Al-stabilized superconductor technology is appropriate for HEP detector magnet technology.

 CICC (Cable-in-conduit conductor) approach may also be a solution (see also: arxiv.org/2203.07799)

Redesign of barrel/door junction More efficient flux return Easier transport/handling



15

Monolithic Active Pixels for Tracking

Parameter	Value
Min. Threshold	$140 e^{-}$
Spatial resolution	$7~\mu{ m m}$
Pixel size	$25 \mathrm{~x} 100 \ \mu \mathrm{m}^2$
Chip size	$10 \ge 10 \text{ cm}^2$
Chip thickness	$300~\mu{ m m}$
Timing resolution (pixel)	$\sim ns$
Total Ionizing Dose	100 kRads
Hit density / train	$1000 \text{ hits} / \text{ cm}^2$
Hits spatial distribution	Clusters
Power density	$20~\mathrm{mW}$ / cm^2

Table 1: Target specifications for 65 nm prototype.

Potential for providing higher granularity, thinner, intelligent detectors at lower overall cost.

- Stitching large scale sensors, reduced dead areas
- Lower power, lower cost, less material.
- Fully-depleted MAPS/CMOS: faster charge collection, higher efficiency, less cross-pixel charge sharing

- SLAC working in WP1.2 collaboration at CERN
- ALICE ITS3 upgrade main driver
- Design 1.5x1.5 mm² prototype with few pixels to test sensor +

front-end

- Submission of first prototype in 2022
- Study sensor performance on TowerSemi 65 nm process
- Feedback from WP 1.2 measurements at CERN

This is a major research area that needs urgent, targeted R&D support.

MAPS-based Electromagnetic Calorimetry

Shwrplot108Scat

11

2.243 mm

W

Air

Clusters

Event 8

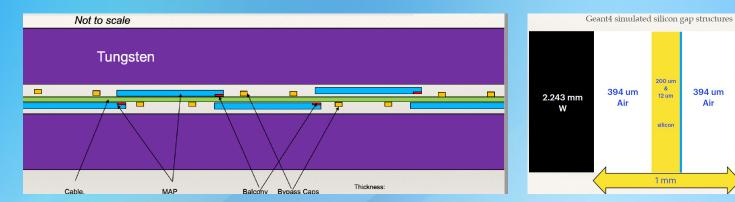
 $0 \le Layer \le 40$

Shower Clusters

New SiD fine pixel sensors

 $25 \,\mu m \times 100 \,\mu m$ pixels


-50



40 GeV $\pi^0 \rightarrow$ two 20 GeV γ 's

Instruments 2022, 6(4), 51

High Priority, Critical R&D Needed Technology R&D

Superconducting Coil(s) - wire and winding techniques, project with industry

MAPS for Tracking and ECal – stitching, large scale sensors, reduced dead areas

Pixel readout for TPC – GridPix dE/dx from cluster counting

Fast timing/power requirements – explore benefits for tracking/calorimetry

Detector Concept development

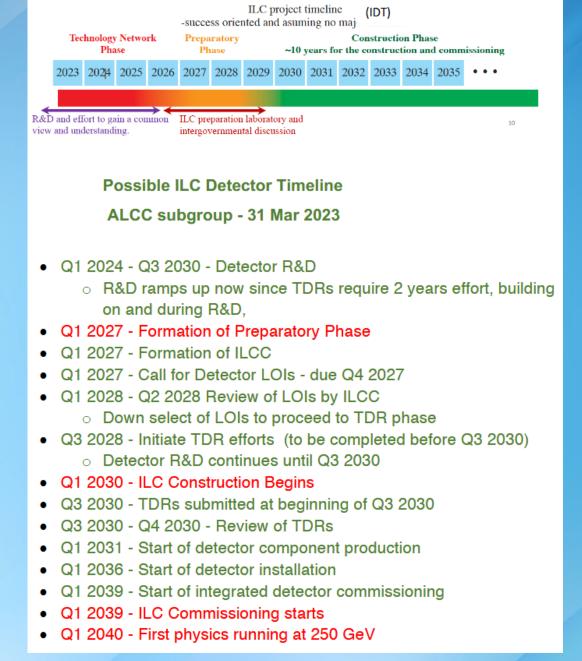
Concept major parameters: overall dimensions, magnet field strength, MDI, services

Major subsystems: main calorimeters, magnet return yoke, tracker and their interplay

Strategy for assembly and installation of detectors

ILC Timeline

Developed to match success-oriented ILC timeline from IDT


The significant work already done on ILC detectors makes this aggressive timeline achievable.

To respond to this timeline two development lines are needed:

- Detector R&D on specific technologies.
- Development of Detector Concepts towards the TDR stage

For both these lines new ideas are always welcome for new technologies

...and/or new detector concepts.

Conclusions

- A Higgs Factory has been identified via the Snowmass process as the highest HEP priority after HL-LHC upgrades construction – also consistent with European Strategy and JAHEP statement.
- A Linear Collider offers unique features, such as polarization and extensibility of energy range, that will fully map the Higgs Physics Program, including self-interaction, in a timely manner.
- Development over an extended period has resulted in two validated e⁺e⁻ detector concepts.
- R&D is needed for technologies beyond the original designs
- Support is needed to bring ILC detectors to the TDR stage.
- In order for the US to play a major role in a Higgs Factory an "immediate, vigorous and targeted detector R&D program" (Snowmass EF report) is needed.

Extra

ILC Parameters

Quantity	Symbol	\mathbf{Unit}	Initial	\mathcal{L} Upgrade	Z pole	U	ogrades	
Centre of mass energy	\sqrt{s}	GeV	250	250	91.2	500	250	1000
	c 1034	$cm^{-2}s^{-1}$	1.35					5.1
Luminosity				2.7	0.21/0.41	1.8/3.6	5.4	
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	$f_{\rm rep}$	$_{\rm Hz}$	5	5	3.7	5	10	4
Bunches per pulse	$n_{\rm bunch}$	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	$N_{\mathbf{e}}$	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	t_{pulse}	μs	727	961	727/961	727/961	961	897
Average beam power	$P_{\rm ave}$	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	$\sigma_{\rm z}^*$	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathbf{x}}$	$\mu { m m}$	5	5	6.2	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	nm	35	35	48.5	35	35	30
RMS hor. beam size at IP	$\sigma^*_{\mathbf{x}}$	nm	516	516	1120	474	516	335
RMS vert. beam size at IP	$\sigma_{\rm y}^*$	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	$\delta_{\rm BS}$		2.6%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power	$P_{\rm site}$	MW	111	128	94/115	173/215	198	300
Site length	$L_{\rm site}$	\mathbf{km}	20.5	20.5	20.5	31	31	40

Table 4.1: Summary table of the ILC accelerator parameters in the initial 250 GeV staged configuration and possible upgrades. A 500 GeV machine could also be operated at 250 GeV with 10 Hz repetition rate, bringing the maximum luminosity to $5.4 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ [30]. *): For operation at the Z-pole additional beam power of 1.94/3.88 MW is necessary for positron production.

SiD Parameters

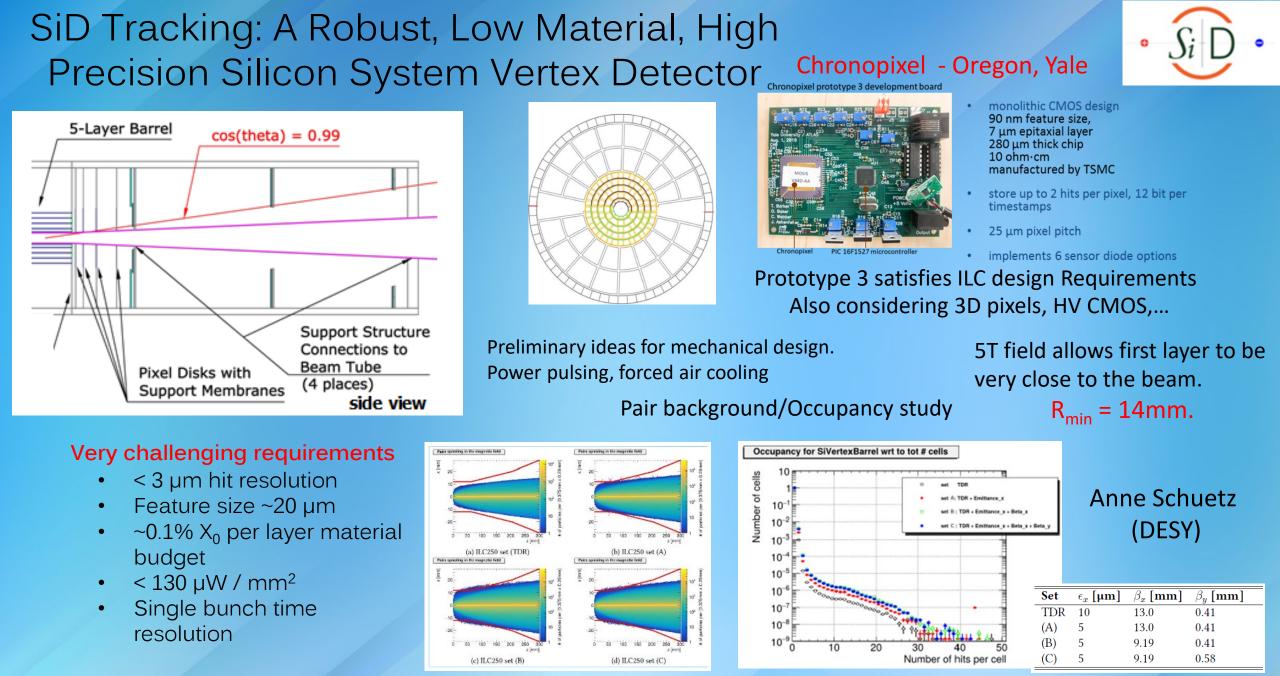
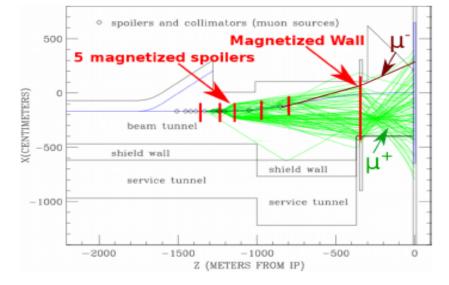

SiDBarrel	Technology	In rad	Out rad	z extent
Vtx detector	Silicon pixels	1.4	6.0	\pm 6.25
Tracker	Silicon strips	21.7	122.1	\pm 152.2
ECAL	Silicon pixels-W	126.5	140.9	\pm 176.5
HCAL	Scint-steel	141.7	249.3	\pm 301.8
Solenoid	5 Tesla SC	259.1	339.2	± 298.3
Flux return	Scint-steel	340.2	604.2	\pm 303.3
SiDEndcap	Technology	In z	Out z	Out rad
Vtx detector	Silicon pixels	7.3	83.4	16.6
Tracker	Silicon strips	77.0	164.3	125.5
ECAL	Silicon pixel-W	165.7	180.0	125.0
HCAL	Scint-steel	180.5	302.8	140.2
Flux return	Scint/steel	303.3	567.3	604.2
LumiCal	Silicon-W	155.7	170.0	20.0
BeamCal	Semicond-W	277.5	300.7	13.5

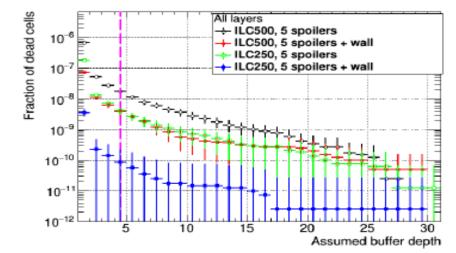
Table 6.3: Key parameters of the baseline SiD design. (All dimension are given in cm).

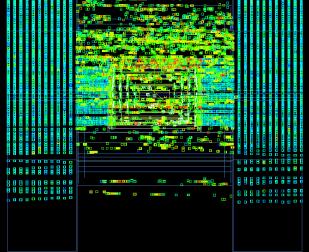
ILD Parameters

Barrel	Technology	r_{in}/mm	r_{out}/mm	z_{max}/mm	
VTX	Silicon pixel	16	60	125	
SIT	Silicon pixel	153	303	644	
TPC	Gas	329	1770	2350	
SET	Silicon strip	1773	1776	2300	
ECAL	Silicon pads	1805	2028	2350	
HCAL	scintillator or RPC	2058	3345	2350	
Coil	4 Tesla Solenoid	3425	4175	2350	
Muon	Scintillator	4450	7755	4047	
Endcap	Technology	z_{min}/mm	z_{max}/mm	r_{in}/mm	r_{out}/mm
FTD 1	Silicon pixel	220	37	-	153
FTD 1	Silicon strip	645	2212	-	200
ECAL	Silicon pads	2411	2635	250	2096
HCAL	scintillator or RPC	2650	3937	350	3226
Muon	Scintillator	4072	6712	350	7716
BeamCal	GaAs pads	3115	3315	18	140
Luna; Cal	Silicon pads	2412	2541	84	194
$\operatorname{LumiCal}$	billion pads				

Table 6.1: Main parameters of the ILD detector for the barrel and the endcap part.


A. White P5 BNL


4/12/2023


25

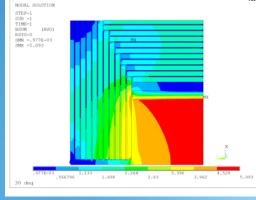
MDI Studies

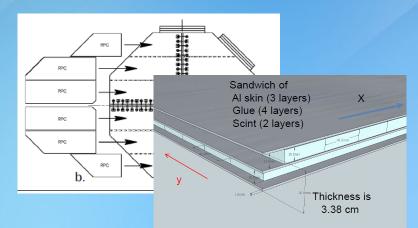

BDS muon study

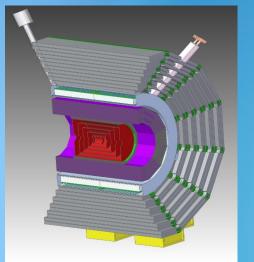
#muons / bunch crossing	ILC250	ILC500	
No shielding	39.3	130.1	
Magnetized spoilers	1.3	4.3	
Magnetized spoilers + wall	0.03	0.6	

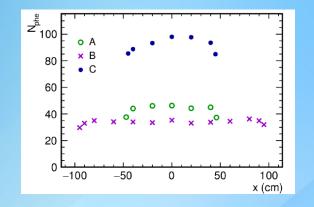
At ILC250, magnetized spoilers without wall are sufficient for occupancy mitigation.

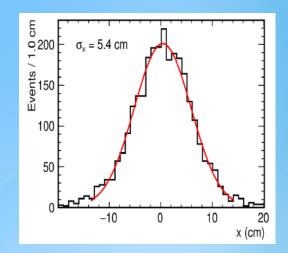
Wall might me neccessary at higher stages, and as a tertiary containment device.


Anne Schuetz (DESY)



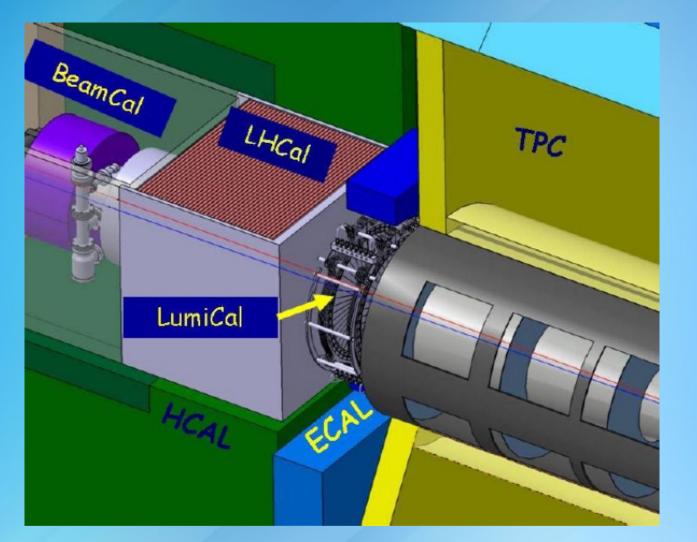

SiD Muon identifier/Calorimeter Tail Catcher




SiD Baseline – long scintillator strips with WLS fiber and SiPM readout

- Consistent extension of the baseline HCal scintillator technology
- Need to optimize number of layers, strip dimensions.

Development work at Fermilab:



Marco Oriunno (SLAC)

ILD Forward Calorimetry

Goals: Measure precision luminosity (with Bhabhas) and provide hermeticity down to around 5 mrad.

LumiCal (32-74 mr) LHCal (4l plug) BeamCal (5-40 mr)

Hermeticity is a strength of linear colliders