Physics Case for the 10 TeV Scale: **Muon Collider and FCC-hh**

Patrick Meade C.N. Yang Institute for Theoretical Physics **Stony Brook University**

Physics Case for the 10 TeV Scale: *And don't forget about with Muon Collider and FCC-hh

Patrick Meade C.N. Yang Institute for Theoretical Physics **Stony Brook University**

A single talk on μ Col and FCC?

Project Cost (no esc., no cont.)	4	7	12
MC-10			
FCChh-100			

Proposal Name	Power	Siz
	Consumption	
MC (14 TeV)	~300	27 k
FCC-hh (100 TeV)	~560	91 k

A single talk on µCol and FCC? Naively as projects they don't have a lot in common

Different particles, size, locations, staging, power, carbon footprint, cost, component readiness, timelines, staging, etc. (most of this is for the SLAC town hall)

FCC-hh (100 TeV) ~ 560 91 km

So what's the unifying theme that also makes it easy to put them in one talk?

Proton Driver Beam screen Collimation system Power eff.& consumption

Energy!

These were the two options investigated in the most detail during Snowmass for the "Energy Frontier" of the... Energy Frontier

Energy!

These were the two options investigated in the most detail during Snowmass for the "Energy Frontier" of the... Energy Frontier

If you have an e^+e^- with identical beam properties to a μ Col the physics reach will be similar (although there are subtle differences you can ask me about)

However, what I hope to convince you is there is both an urgency and a physics case for 10 TeV already!

I am once again asking for more Energy and more Luminosity

ngflip.com

So, as a theorist...

This is why the EF report emphasized work in *parallel* on **Higgs Factories and Multi-TeV machines not sequentially!**

The Energy Frontier Report

2021 US Community Study on the Future of Particle Physics

organized by the APS Division of Particles and Fields

The US EF community has also expressed renewed interest and ambition to bring back energy-frontier collider physics to the US soil while maintaining its international collaborative partnerships and obligations.

For the five year period starting in 2025:

- 1. Prioritize the HL-LHC physics program, including auxiliary experiments,
- 2. Establish a targeted e^+e^- Higgs factory detector R&D program,
- 3. Develop an initial design for a first stage TeV-scale Muon Collider in the US,
- 4. Support critical detector R&D towards EF multi-TeV colliders.

For the five year period starting in 2030:

- 1. Continue strong support for the HL-LHC physics program,
- 2. Support construction of an e^+e^- Higgs factory,
- 3. Demonstrate principal risk mitigation for a first stage TeV-scale Muon Collider.

Plan after 2035:

- 1. Continuing support of the HL-LHC physics program to the conclusion of archival measurements,
- 2. Support completing construction and establishing the physics program of the Higgs factory,
- 3. Demonstrate readiness to construct a first-stage TeV-scale Muon Collider,
- 4. Ramp up funding support for detector R&D for energy frontier multi-TeV colliders.

Any inferred sequencing of HF and multi-TeV stems from the fact that unfortunately we're not ready to build a 10 TeV scale machine <u>yet</u>

HF represent a good opportunity <u>now</u>, *not* a fundamental ordering

So what does the 10 TeV scale case rest on? New experimental data Theoretical Theoretical

understanding of data

The physics landscape evolves!

advances

Generic Lessons from LHC? The physics landscape has significantly changed since 2013 P5 -**13 TeV LHC hadn't even started! ATLAS** Preliminary $\sqrt{s} = 8, 13 \text{ TeV}$ $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$

lev

nly a selection of the available mass limits on new states or omena is shown. Many of the limits are based or lified models, c.f. refs. for the assumptions made

There *could* still be new physics at LHC/HL-LHC... but we need to invest NOW in R&D

Data suggests generically there is a gap from **EW** scale to scale of New Physics

We need to be able to probe \gg 1 TeV

10 TeV is interesting as a step into unknown but also for physics targets

Just to assuage any HL-LHC fears

FY07 FY08 FY09 FY10 FY11

1 T	HE ENERGY FRONTIER	
1.1	Tevatron Collider	
1.2.1	Initial LHC	
1.2.2	SuperLHC—Phase 1	
1.2.3	SuperLHC—Phase 2	
1.3	ILC/Lepton Collider	

KEY R&D Contruction Operation

The approximate timescales for R&D (yellow), construction (red) and operation (green) are indicated. Line 1.3 reflects the uncertain timescale of a lepton collider. If LHC results point to a 500 GeV collider, the international community could select the ILC and decide on a construction start at that time. In this roadmap we indicate a possible construction start for an international project late in the next

Preparing for the future isn't crazy just look 2 P5's ago

decade with black shading. If LHC results indicate that a higher-energy lepton collider is required, R&D after 2012 or so will shift to the new technology required for such a collider. On line 3.6, High Energy Particles from Space, the program beyond 2012 will be addressed by the proposed HEPAP subpanel on particle astrophysics; this is indicated by black shading past 2013 on the roadmap.

If the lesson of the LHC is Higgs + nothing...

Isn't a Higgs factory sufficient?

Since then (1990s), the paths of different colliders have diverged: hadron colliders continued the quest for record high energies in particle reactions and the LHC was built at CERN, while in parallel highly productive e+e- colliders called particle factories focused on precise exploration of rare phenomena at *much lower energies*. (V. Shiltsev, F. Zimmermann 2021 Reviews of Modern Physics)

Are record energies a luxury for after a deviation?

If the lesson of the LHC is Higgs + nothing... Isn't a Higgs factory sufficient?

Since then (1990s), the paths of different colliders have diverged: hadron colliders continued the quest for record high energies in particle reactions and the LHC was built at CERN, while in parallel highly productive e+e- colliders called particle factories focused on precise exploration of rare phenomena at much lower energies. (V. Shiltsev, F. Zimmermann 2021 Reviews of Modern Physics)

Are record energies a luxury for after a deviation?

Why aren't Higgs Factories enough* just for the <u>SM Higgs?</u>

(* don't misinterpret, Higgs factories are great they just don't do everything for SM Higgs and they are long overdue)

Number of Higgs and Number of *Multiple* Higgs produced at things currently called a Higgs Factory

The SM Higgs is an unprecedented particle.

LEP was a Z boson factory and produced ~ 17 Million Z bosons

Z boson Branching Fractions \sqrt{v} $\frac{1}{v^+ v^-}$ $\frac{1}{v^+$

All major Branching Fractions are $\gtrsim O(1\%)$

A Higgs factory is a great <u>start</u> but without the ability to increase luminosity by orders of magnitude we *need* more Energy

Higgs Factories produce ~ 1 Million Higgs bosons

Higgs boson Branching Fractions

The same Higgs Branching Fractions span 8 to 20 ORDERS OF MAGNITUDE or more!

For a first stage LC or *any* circular Higgs Factory there are effectively *no* Di-Higgs events produced!

Why does this matter?

For a first stage LC or any circular Higgs Factory there are effectively no Di-Higgs events produced!

Testing the Higgs potential experimentally

Experimentally we look for multi-Higgs production

Can we demonstrate the qualitatively new self coupling and test the validity of SM? (BSM later)

Current status of LHC Higgs Potential Measurements?

H/T N.Craig, R. Petrossian-Byrne

Final state	Collaboration	allowed κ_{λ}	interval at 95% CL
		observed	expected
$b\overline{b}b\overline{b}$	ATLAS	-3.5 - 11.3	-5.4 - 11.4
0000	CMS	-2.3 - 9.4	-5.0 - 12.0
$b\bar{b}\sigma^+\sigma^-$	ATLAS	-2.4 - 9.2	-2.0 - 9.0
001 1	CMS	-1.7 - 8.7	-2.9 - 9.8
hhave	ATLAS	-1.6 - 6.7	-2.4 - 7.7
00 γ' γ	CMS	-3.3 - 8.5	-2.5 - 8.2
comb	ATLAS	-0.6 - 6.6	-1.0 - 7.1
	CMS	-1.2 - 6.8	-0.9 - 7.1

Snowmass EF Higgs Topical Report

S. Dawson, PM, I. Ojalvo, C. Vernieri et al 2209.07510

Current status of LHC Higgs Potential Measurements?

H/T N.Craig, R. Petrossian-Byrne

Current LHC

Current status of LHC Higgs Potential Measurements?

We clearly need to do better and we *must* have <u>higher energies</u> beyond the LHC to do so!

Even if we only care about the SM Higgs we'd actively need to pursue R&D for higher Energy to have any hope of "completing" the SM

How much Precision/Energy is needed?

Are there other arguments for a scale other than going beyond LHC/HF?

Energy ----- Precision

Even if we only care about the SM Higgs we'd actively need to pursue R&D for higher Energy to have any hope of "completing" the SM

How much Precision/Energy is needed?

Are there other arguments for a scale other than going beyond LHC/HF?

Energy ---- Precision

Must ask sharper questions about physics (BSM)

The unknown doesn't set a scale...

and it's harder to get a guaranteed return on the unknown!

Testing WIMP DM is a pillar but whether it exists is far less certain so let's start with the Higgs

The centrality of the Higgs is underrated, not commonly understood, and not appreciated how weird the Higgs actually is!

Thermal History of Universe

Naturalness

Fundamental or Composite?

Is it unique?

Snowmass EF Higgs Topical Report S. Dawson, PM, I. Ojalvo, C. Vernieri et al 2209.07510

We want to *understand* the origin of EWSB (AKA everything around us)

We want to understand the origin of EWSB

Wait what? V(h)

h

We want to understand the origin of EWSB

Wait what? V(h)14/(1)4 3

years GGS boson

"The more ambitious goal... is to identify and understand the nature of electroweak symmetry breaking, the asymmetry that is key to the material universe. The Higgs boson is but its herald."

We want to *understand* the origin of EWSB Superconducting Analogy

Powerful phenomenological model

Its effectiveness belies a deeper origin of underlying symmetry breaking

Type I superconductor

The why? BCS theory (1957)

Landau-Ginzburg Model 1950

Type II superconductor

Φ

We want to *understand* the origin of EWSB

Fundamental or Composite?

Is the Higgs "pion like"?

Dynamical explanation for EWSB

Search for resonances, constituents at high energy

It is <u>not</u> QCD like so effective operators are powerful

If the Higgs is fundamental there still could be a *deeper* origin

SUSY Cosmic Neutral **Radiative EWSB** Naturalness Selection **Higgs mass correlation Higgs portal** effects **Corresponding direct** searches 34

FIG. 6. Higgs mass as a function of M_S , with $X_t = 0$. The green band is the output of FeynHiggs together with its associated uncertainty. The blue line represents 1-loop renormalization group evolution in the Standard Model matched to the MSSM at M_S . The blue bands give estimates of errors from varying the top mass between 172 and 174 GeV (darker band) and the renormalization scale between $m_t/2$ and $2m_t$ (lighter band).

Naturalness/Radiative EWSB One under appreciated consequence of a robust solution of this problem is that it should also "predict" the Higgs mass

> Supersymmetry isn't dead, the Higgs told us the LHC would have a hard time immediately!

The 10 TeV scale is particularly interesting for SUSY and I don't scoff at consistent extensions of spacetime symmetry

Higgs Portal If the Higgs is a fundamental scalar particle...

The Higgs provides the lowest dimension Lorentz and Gauge Invariant Operator... It should be a leading contribution

Needs: Probe the Higgs couplings, new states coupled to Higgs

Origin and Fate of the Universe?

Higher T

Stability of Vacuum?

Next era in SM history is the "Electroweak Phase Transition"

What is the phase diagram of the Electroweak Symmetry?

Next era in SM history is the "Electroweak Phase Transition"

V(h)

What is the phase diagram of the Electroweak Symmetry?

However, we don't know that there was symmetry restoration at temperatures \gg EW scale!

h

Even if it is restored we don't know the order of the phase transition experimentally

T⊳T_{EW}

Higher T?

V(h)

Proxy for understanding the early Universe are Higgs self interactions: Probe the Higgs self interactions to at least $\lambda_3 \sim O(1) \%$

h

h

V(h)

 $T \sim T_{EW}$

What is the fate of the Universe?

Physicists Accidentally Discover a Self-Destruct Button for the Entire Universe

Unfortunately, humanity will never see it coming.

PHILIP PERRY 01 November, 2016

The fate of the Universe?

 $V(h) \sim -h^2 + \lambda h^4$

Quantum Corrections to the Higgs

 $\mu \frac{d\lambda}{d\mu} \propto \lambda^4 - y_t^4$

Higgs pole mass M_h in GeV

Needs: Probe the Higgs self interactions, measure top quark properties better

WIMP where W is our weak interactions!

The simplest WIMP possibilities remain and colliders are the most robust way to test

The WIMP is dead, long live the WIMP

A collider that can pair produce EW states with mass of ~ 3 TeV is needed

SU(2) triplet

Unfortunately the LHC won't come **SU(2)** doublet 10^{3} close to testing this

For simplest WIMP DM we need a more collider with more energy

Generic case for multi-TeV colliders at the 10+ TeV scale is clear

To quantify further we need to look at specific collider options and how they differ (and many aren't as familiar with a μ Col)

What's the most basic difference between μ Col and FCC-hh?

The μ is fundamental

What's the most basic difference between μ Col and FCC-hh?

The μ is fundamental

Muon This isn't the full story but to *first* approximation fundamental vs composite explains a good amount

Proton

48

What's the most basic difference between μ Col and FCC-hh?

Can ask what collider energy yield same total σ when using "Parton Luminosity" e.g. this case $2 \rightarrow 2$ process w/ $\beta \equiv \hat{\sigma}_p / \hat{\sigma}_u$

This doesn't mean: $\sqrt{s_{\mu}}$ TeV μ Col = $\sqrt{s_p}$ pp collider **Corollary: 10 TeV** μ **Col** \neq **FCC-hh**

This argument is *not* saying that the physics is equivalent!

It does give a sense for why the energies of the colliders can be so different while going after similar physics

30

Protons Particle Data Group 2016 valence peaks at x~.2 sea of quarks and gluons below

Both FCC-hh and μ Col₁₀ha

Last but not least, backgrounds!

"Hard" physics backgrounds

Collider specific backgrounds

- FCC-hh μCol BIB Pileup
- ~1000 events/ Large flux from crossing µ-decays

These will be discussed more in the next talks and help drive R&D

So what do these colliders give you in terms of the physics discussed?

Higgs Precision Physics

European strategy update de Blas et al 1905.03764

<i>к</i> -0	HL-	LHeC	HE-	-LHC		ILC			CLIC	1	CEPC	FC	C-ee	FCC-ee/	$\mu^+\mu^-$
fit	LHC		S2	S2'	250	500	1000	380	1500	3000		240	365	eh/hh	10000
κ_W	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14	0.11
κ_Z	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12	0.35
κ_g	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49	0.45
κ_γ	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29	0.84
$\kappa_{Z\gamma}$	10.	—	5.7	3.8	99 *	86*	$85\star$	$120\star$	15	6.9	8.2	81*	$75\star$	0.69	5.5
κ_c	—	4.1	—	_	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95	1.8
κ_t	3.3	—	2.8	1.7		6.9	1.6	_	_	2.7	—			1.0	1.4
κ_b	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43	0.24
κ_{μ}	4.6	—	2.5	1.7	15	9.4	6.2	$320\star$	13	5.8	8.9	10	8.9	0.41	2.9
$\kappa_{ au}$	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44	0.59

High energy also implies one can also test origin of deviations simultaneously - new formalism needed

Rapid progress, μ **Col numbers** didn't exist at the time of last **European Strategy Update**

M. Forslund et al. 2203.09425+WIP M. Chen, D. Liu 2212.11067 Z. Liu et al WIP

High energy improves Higgs precision

Precision implies a scale

 M_{NP}^2

 $1\% \implies M_{NP} \sim 1 \,\mathrm{TeV}$

Composite Higgs

← Left-to-right of 7 curve cluster: CLIC1500, ILC500 (new), FCC-ee (Cφ), CEPC (new), ILC1000 (new), FCC-ee/hh/eh (Cφ), CLIC3000

Muon colliders are particular suited to testing possible Higgs Compositeness

Naturalness and Supersymmetry Example

ach

59

The Higgs at 125 GeV already suggested the SUSY scale was high, e.g. Stops ~ 10 TeV

FCC-hh is superior to 10 TeV muon collider for Stop Searches, given colored particle nature

In realistic models - EWinos/ Sleptons tend to be TeV scale which is within reach of a 10 TeV muon collider

ILC 0.5 TeV

or a uccol is needed!

- Disappearing track
- Kinematic limit, $0.5 \times E_{\rm CM}$

Conclusions

• There is an urgency for High Energy colliders already

- Being prepared to reach beyond the picture painted by the LHC so far
- Probing the Higgs potential and the origin and fate of the universe, understanding the origin of all of us through EWSB
- Dark Matter the simplest motivated possibilities still persist and are testable
- More possibilities in the Snowmass reports (an enormous amount of work went into them)
- These colliders of course have further synergies/staging I haven't touched here
- The 10 TeV scale let's us attack fundamentally new questions and answers, the only drawback is we can't get there yet
 - We must invest in our future to bring this to a reality ASAP
 - We must invest in robust R&D toward multiple approaches in order to ensure we get there

Backup

These questions are not all independent, but I hope to give you some sense of what they are and how to test them to motivate future colliders

