



## **Towards Muon Collider** *detectors*

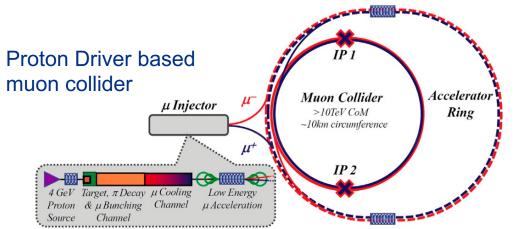
Sergo Jindariani (Fermilab) Apr 13<sup>th</sup>, 2023 On behalf of US Muon Collider Community, International Muon Collider Collaboration, and Snowmass Muon Collider Forum

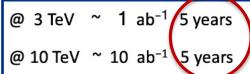
Thank you to everybody who provided input!

# **Physics Motivation**

We need to prepare for higher energies based on data from the LHC

### **Muon Collider:**


- Versatile machine with incredible EW reach (not just a muon collider, but a boson-boson collider)
- Higgs and understanding of Electroweak symmetry breaking
- Dark Matter


And much more...



## **The Machine Concept**

- The goal is to get to 10 TeV center-of-mass energy
- Staging at 3 TeV is the current baseline, other scenarios possible
- Energy reach and precision in one machine
- Small footprint (can fit at Fermilab) and high energy efficiency
- Strong synergies with Neutrino program and other areas of HEP and Nuclear (see backup)



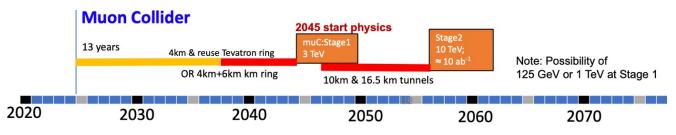


Up to 2 interaction points but only one experiment assumed now



# What changed since the last P5?

- Physics: Strong surge of interest in Muon Colliders within the theoretical and experimental communities. Shift of emphasis in Muon Colliders from 125 GeV to 10 TeV energy [ref]
- Accelerator Technology (more details at the SLAC townhall):
  - Muon Accelerator Program (MAP) results completed and published, including designs of various subsystems [<u>ref</u>]
  - Key technological progress: multi-MW proton sources [<u>ref</u>], demonstration of RF in magnetic field [<u>ref</u>], high field solenoids [<u>ref</u>], good solution for neutrino flux mitigation, etc.
  - Muon Ionization Cooling Experiment (MICE) confirmed muon ionization cooling principle, results published [ref]
- **Detector:** Large leap in detector technologies in part from R&D done for HL-LHC upgrades. Feasibility of good quality physics in Muon Collider environment established in simulation [ref]
- International Muon Collider Collaboration (IMCC) established. MAP+IMCC put muon collider on a realistic path


## **Muon Collider in Snowmass**

- Cross-frontier AF+EF+TF Muon Collider Forum :
  - Regular meetings with 50-100 participants in each, workshops
  - 40+ dedicated White Papers
  - Final report with ~180 authors, 50+% from Early Career (<u>arxiv:2209.01318</u>)

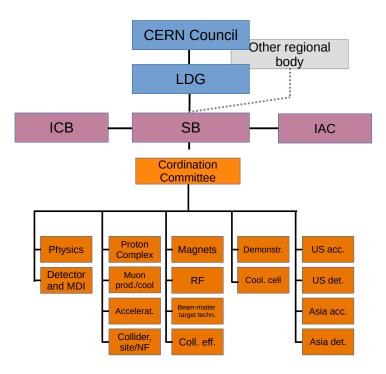
 Conclusion of the Forum: No fundamental showstoppers identified, but many engineering challenges exist, requiring a significant R&D investment



## The US timeline shown in Snowmass



- This is a highly optimistic Technically Limited timeline
  - not limited by resources/funding
  - does not account for R&D risks
  - assumes no delays in construction
- The actual project start time is subject to:
  - Successful outcome of the proposed extensive R&D program
  - Availability of funding + resources, host laboratory, and international agreements
- Development will take a long time need to start now!



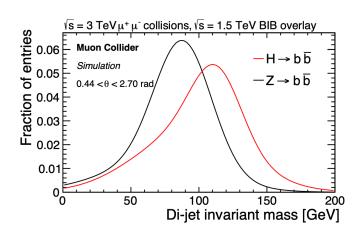

- Fermilab ACE+expansions could provide the accelerator frontend
- More at upcoming "ACE Science workshop"



## **International Effort**

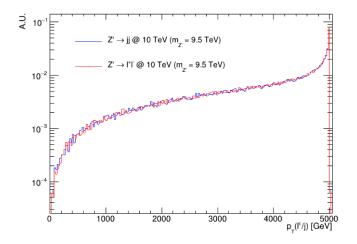
- Following the 2018 European Strategy process, Laboratory Director's Group initiated a Muon Collider feasibility study
- International Muon Collider Collaboration (IMCC) was formed and hosted at CERN
- IMCC planning assumes a significant US participation to develop the baseline project and the best siting option (including US siting)
- Several US universities joined IMCC, many more expressed interest




IMCC technical timeline will be reviewed periodically, including next year if/when DOE/NSF join the effort



## **Detector Requirements**


### Precision Higgs program:

- High performance tracking for Particle Flow reconstruction
- + Good calorimetric energy resolution → need to separate W/Z from Higgs
- Performant heavy flavor tagging (e.g. H→bb/cc)

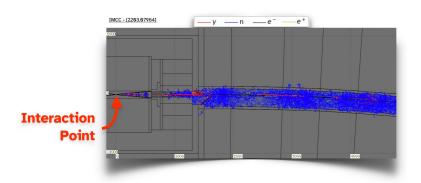


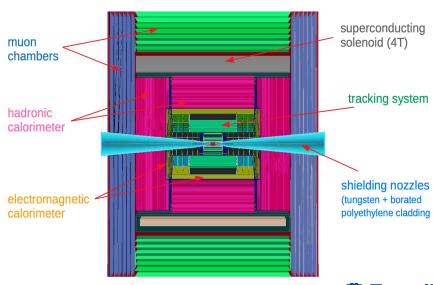
### BSM program:

- Ability to reconstruct high energy leptons and jets
- Maintain acceptance/efficiency for unconventional signatures (disappearing tracks for DM searches, long-lived particles, etc)



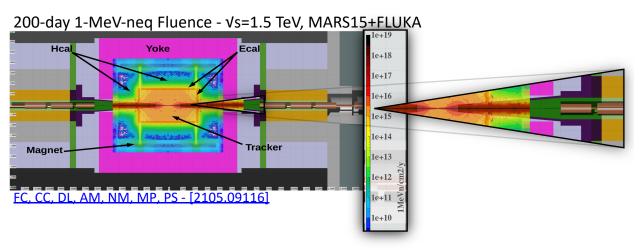


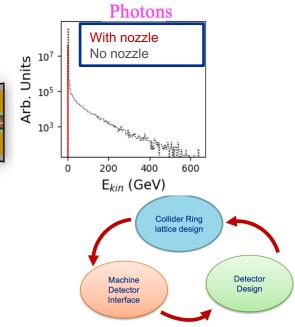

## The Detector


Why do Muon Colliders need specialized detectors?

 Muons decay → Unique feature/challenge of Muon Collider detectors – beam induced background (BIB)

 Most of the energy in the detector is from muon decays that eventually result in a high rate of out-of-time neutrons and photons reaching the detector (BIB)→


major effect on the detector design



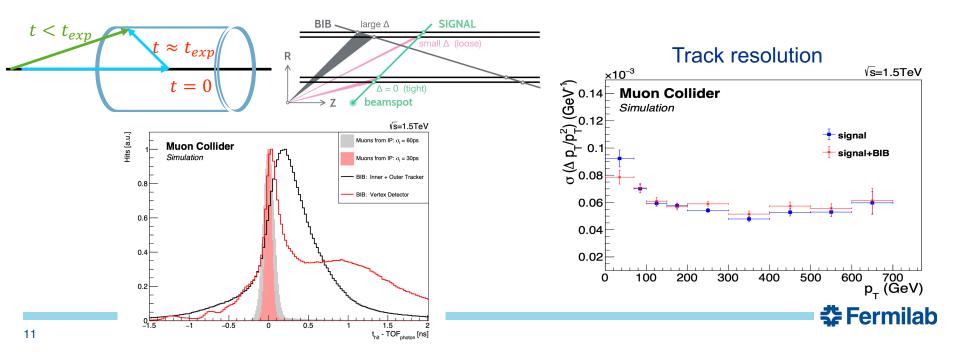





## **Machine-Detector Interface (MDI)**






Forward region covered by coated tungsten nozzles:

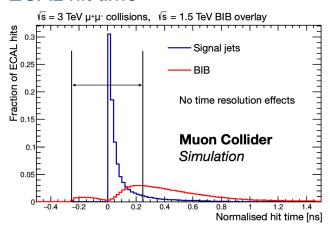
- Reduces BIB in detector by many orders of magnitude
- Turns highly localized incident energy into diffuse detector energy
- Future nozzle optimization can bring further improvement:
  - materials/shapes/size, collaboration between accelerator and detector experts



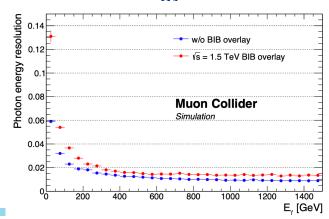
### **Tracker**

- Need to build detectors that can tell the difference between post-nozzle BIB and signal
- The BIB is mostly out of time and not pointing to the Interaction Point
- Some similarities with LHC pileup can build on that experience!
- 4D tracker with precision timing (~30-60 ps), pointing, and local intelligence for on-chip BIB rejection




### **Calorimeter**

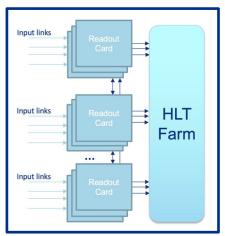
- BIB dominated by low energy neutrals: photons (96%) and neutrons (4%)
- Current SiW ECAL + Iron/Scintillator HCAL design works reasonably well, but new ideas (e.g. Crilin, dual readout) can bring better performance

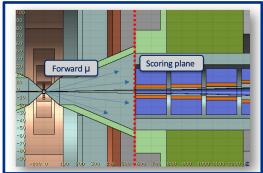

### General Features:

- High granularity and shorter integration windows
- Hit time measurement O(100ps)
- Longitudinal segmentation

### ECAL hit time



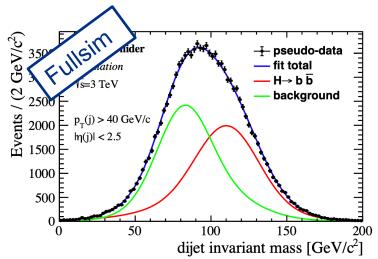

### **Photon Energy Resolution**






## **Muons, DAQ and Forward Detectors**

- Muon system: some technologies are reaching rate limits in the forward region. Also some contain gas mixture which has a high Global Warming Potential
- DAQ: Long time (10s of microseconds)
  between bunch crossings. Estimates indicate
  that a "streaming" architecture is possible.
  Various options for how to filter/store data
- Forward Detectors: Just started to investigate possibility of instrumenting the forward region for muon tagging, BSM physics, and for luminosity measurements







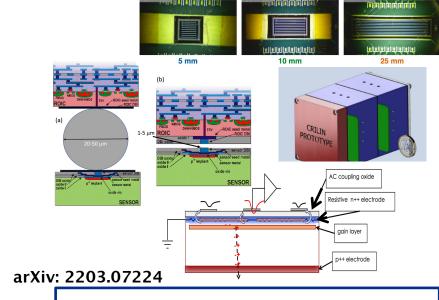

## **Full Simulation Physics Studies**

- Detector requirements designed to meet physics goals
- Many measurements simulated with fully realistic background and reconstruction
- Two very different examples: Higgs→bb cross section and Dark Matter with disappearing tracks → Good agreement with FastSim



Higgs → bb cross-section:

FastSim: 0.73% vs Fullsim: 0.75%




Very good agreement in 2-track final state
1-track better in fastsim due to higher acceptance



## **R&D Activities in US and Europe:**

- 4D Trackers:
  - Design, Sensors, Data Transmission, Power, Mechanics
  - 3D Integration, ASIC, Intelligent Sensors/Modules
- Calorimeters:
  - Different technologies, design, reconstruction (with AI/ML)
  - Integration of precision timing
- Muons:
  - Qualification of new gases, fast timing,...
- TDAQ:
  - Architecture studies
  - Real-time reconstruction, novel readout technologies
- MDI+Forward:
  - MDI Design, Forward Muon Tagger
  - Luminosity Monitor
- Detector magnet



Promising Technologies and R&D Directions for the Future Muon Collider Detectors

> Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Significant synergies with HL-LHC and EIC, e+e-, and pp detectors

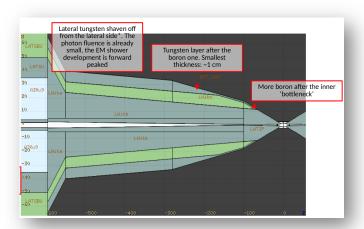


### **Software and Simulations**

- Realistic simulation of the BIB is crucial for quantifying the detector performance
- Complex event features due to beam-induced background
- The design, optimization, performance estimation and physics case of a muon collider are expected to require moderate dedicated computational resources.
  - Core software frameworks and analysis tools. Focus on multi-threading; synergies with other future accelerators projects and HL-LHC
  - BIB and shielding simulations (FLUKA, MARS, GEANT) are CPU/disk-intensive. Need accuracy and efficiency. Ideal case for in-development GPU simulation engines
  - Detector layout design and technology evaluation require iterations.
  - Digitization and reconstruction algorithms require detailed studies and production of large samples for realistic physics projections. Balance full/fast simulations.



### **Towards the 10 TeV Detector**

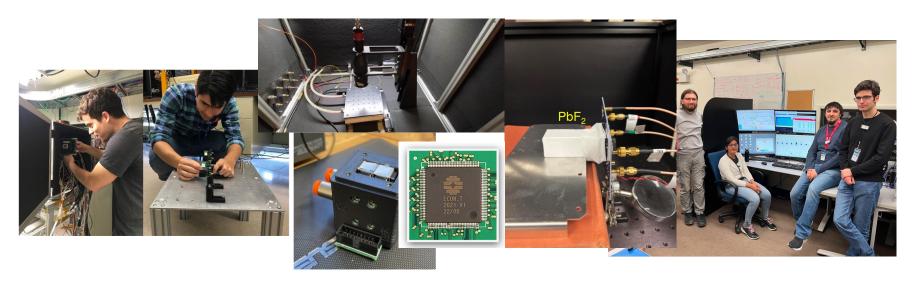

- Detector and MDI designs in early stages of development
- The backgrounds remain flat with energy
- Radiation at HL-LHC levels or lower, much lower than FCC-hh

### With MAP nozzle design

| Monte Carlo simulator                                     | FLUKA               | FLUKA                | FLUKA               |
|-----------------------------------------------------------|---------------------|----------------------|---------------------|
| Beam energy [GeV]                                         | 750                 | 1500                 | 5000                |
| $\mu$ decay length [m]                                    | $46.7\cdot 10^5$    | $93.5\cdot 10^5$     | $311.7\cdot 10^5$   |
| $\mu   \mathrm{decay/m/bunch}$                            | $4.3\cdot 10^5$     | $2.1\cdot 10^5$      | $0.64\cdot 10^5$    |
| Photons $(E_{\gamma} > 0.1 \text{ MeV})$                  | $51 \cdot 10^6$     | $70 \cdot 10^{6}$    | $107 \cdot 10^6$    |
| Neutrons $(E_n > 1 \text{ MeV})$                          | $110 \cdot 10^{6}$  | $91 \cdot 10^{6}$    | $101 \cdot 10^6$    |
| Electrons & positrons ( $E_{e^{\pm}} > 0.1 \text{ MeV}$ ) | $0.86 \cdot 10^{6}$ | $1.1 \cdot 10^{6}$   | $0.92 \cdot 10^{6}$ |
| Charged hadrons $(E_{h^{\pm}} > 0.1 \text{ MeV})$         | $0.017\cdot 10^6$   | $0.020 \cdot 10^{6}$ | $0.044\cdot 10^6$   |
| Muons $(E_{\mu^\pm}>0.1~{ m MeV})$                        | $0.0031 \cdot 10^6$ | $0.0033 \cdot 10^6$  | $0.0048 \cdot 10^6$ |

[IMCC, Submitted to EPJC]






Initial 10 TeV nozzle optimization = 40-50% lower BIB



## **Training Opportunities**

- Cutting edge technology + highly impactful research = Draw the best talent
- Unique training ground for future generations of accelerator and particle physicists:
- Strong interest amongst Early Career build a diverse community of future US particle physics leadership!





## **US Muon Collider R&D Coordination Group**

- In March, R&D Coordination Group was assembled to provide input to P5
- Focus on key elements of 10 TeV accelerator and detector design
- Develop R&D plan, activities, budget and deliverables

Chairs: Sergo Jindariani, Diktys Stratakis (FNAL), Sridhara Dasu (Wisconsin)

#### **Detector R&D Focus Areas:**

Tracking Detectors:

Maurice Garcia-Sciveres (LBNL), Tova Holmes (Tennessee)

Calorimeter Systems

Chris Tully (Princeton), Rachel Yohay (FSU)

**Muon Detectors** 

Melissa Franklin (Harvard), Darien Wood (Northeastern)

Electronics/TDAQ

Darin Acosta (Rice), Michael Begel (BNL), Isobel Ojalvo (Princeton),

MDI+Forward Detectors:

Kevin Black (Wisconsin), Karri DiPetrillo (Chicago), Nikolai Mokhov (Fermilab)

Detector Software/Simulations/ML:

Simone Pagan Griso (LBNL), Walter Hopkins (ANL), Liz Sexton-Kennedy (Fermilab)

+ communication with DOE, CPAD, ECFA

#### **Physics Case Development:**

Patrick Meade (Stony Brook), Nathaniel Craig (UCSB)

#### Accelerator R&D Focus Areas:

Muon source:

Mary Convery (Fermilab), Jeff Eldred (Fermilab), Sergei Nagaitsev (JLAB), Eric Prebys (UC Davis)

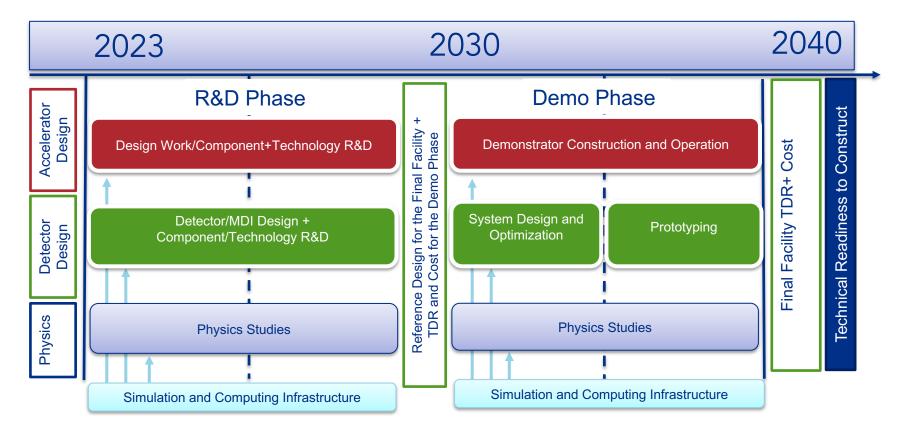
Machine design:

Frederique Pellemoine (Fermilab), Scott Berg (BNL), Katsuya Yonehara (Fermilab)

Magnet systems:

Steve Gourlay (Fermilab), Giorgio Apollinari (Fermilab), Soren Prestemon (LBNL)

RF systems:


Sergey Belomestnykh (Fermilab), Spencer Gessner (SLAC), Tianhuan Luo (LBNL)

#### International Liaisons:

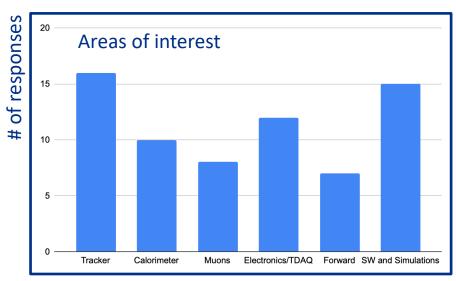
Donatella Lucchesi (INFN), Federico Meloni (DESY), Chris Rogers (RAL), Daniel Schulte (CERN),

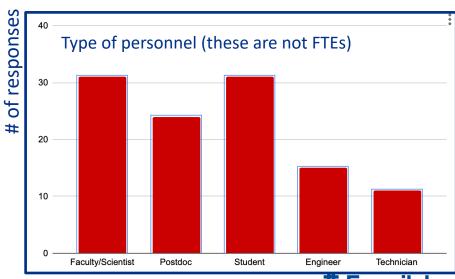


## **US Muon Collider R&D timeline**



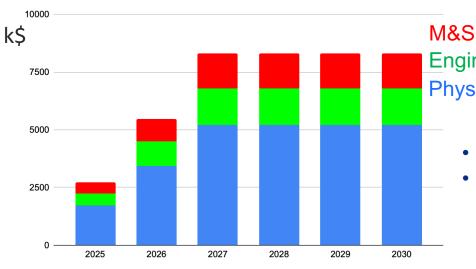



## **Detector R&D Scope and Interest:**


List of work areas and activities

The scope of detector work:

- Support and enhancement of the fullsim framework and tools
- Develop detector + MDI design, simulate the performance, refine detector specs
- Conduct hardware R&D to establish technology feasibility


Expression of interest from 31 PIs from 24 US institutions (does not include theorists and accelerator physicists)





# **US R&D Budget Estimate (Detector only)**

- Bottom-up estimate: assumes ~50% of needed work done by US and another ~50% by international partners → equal partnership with European efforts
- 2025-2030: ramp up to ~ 30-35 FTE/y + M&S for computing and early hardware
  - 1 FTE = \$200k, no escalation included
  - Significant overlaps exist with generic detector R&D efforts



Engineer Labor

Physicist Labor

- 2031-2035: estimate to increase by ~50%
- 2036+: another increase, hard to quantify at this stage



## **Summary**

- Muon colliders open an exciting window into the future of particle physics
- We have a well-organized and highly motivated group ready to address challenges of Muon Collider
- We are asking P5 to:
  - Recommend establishing a Muon Collider R&D program with the goal for technical readiness by ~2040
  - Recommend that DOE and NSF recognize muon collider work within the EF base program proposals, including software and simulations
  - Support the formation of a US Muon Collider effort to coordinate US impact while engaging in global efforts
  - Enable US to compete for hosting a global Muon Collider
- We are also asking for support of the theory community for Muon Collider studies



## **Extras**



## **Useful References**

- Useful references for this Effort:
  - Muon Smasher's Guide: Link
  - IMCC Facility overview white paper: <u>Link</u>
  - IMCC Simulated Performance white paper: <u>Link</u>
  - IMCC Promising Detector Technologies white paper: <u>Link</u>
  - Muon Collider Forum Report: <u>Link</u>



# **Muon Collider Challenges and Progress**

| Challenge                                  | Progress                                                                                                                                  | Future work                                                                                                                      |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Multi MW proton sources with short bunches | Multi-MW proton sources have been and are being produced for spallation neutron sources and neutrino sources (SNS, ESS, J-PARC, Fermilab) | Refine design parameters, including proton acceleration to 5-10 GeV. Accumulation and compression of bunches.                    |
| Multi MW targets                           | Neutrino targets have matured to 1+MW. RADIATE studies of novel target materials and designs aim at 2.4MW.                                | Develop target design for 2 MW and short muon collider bunches. Produce a prototype in 2030s.                                    |
| Production solenoid                        | ITER Nb3Sn central solenoid with similar specifications and rad levels produced                                                           | Study cryogenically stabilized superconducting cables and validate magnet cooling design. Investigate possibility of HTS cables. |
| Cooling channel solenoids                  | Solenoid with 30+T field now exists at NHMFL. Plans to design 40+T solenoids in place.                                                    | Extend designs to the specs of the 6D cooling channel, fabrication for the demo experiment                                       |
| Ionization cooling                         | MICE transverse cooling results published. Longitudinal cooling via emittance exchange demonstrated at g-2.                               | Optimize with higher fields and gradients. Demonstrate 6D cooling with re-acceleration and focusing                              |
| RF in magnetic field                       | Operation of up to 50 MV/m cavity in magnetic field demonstrated, results published                                                       | Design to the specs of the 6D demo, experiment; fabrication                                                                      |

# **Muon Collider Challenges and Progress**

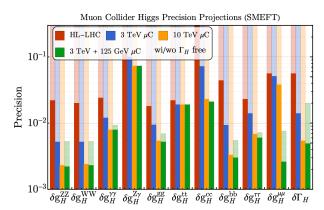
| Challenge                                        | Progress                                                                                                                                                   | Future work                                                                                                              |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Fast Ramping Magnets                             | Demonstrated with 290 T/s at FNAL up to 0.5T peak field                                                                                                    | Design and demonstration work to achieve higher ramp rates (up to 1000 T/s) and peak fields of ~2T                       |  |
| Very Rapid Cycling Synchrotron Dynamics          | Lattice design in place for a 3 TeV accelerator ring                                                                                                       | Develop lattice design for a 10 TeV accelerator ring                                                                     |  |
| Neutrino Flux Effects                            | Mitigation strategies based on placing the collider ring at 200m and introducing beam wobble has been shown to achieve necessary reduction up to 10-14 TeV | Study mechanical feasibility, stability and robustness of the mover's system and impact on the accelerator and the beams |  |
| Detector shielding and rates                     | Demonstrated to be manageable in simulation with next generation detector technologies                                                                     | Further develop and optimize 3 and 10 TeV detector concepts and MDI. Perform detector technology R&D and demonstration.  |  |
| Open aperture storage ring magnets               | 12-15T Nb3Sn magnets have been demonstrated                                                                                                                | Design and develop larger aperture magnets 12-16T dipoles and HTS quads                                                  |  |
| Low-beta IR collider design and dynamic aperture | Lattice design in place for a 3 TeV collider with optics and magnet parameters within existing technology limits  Develop lattice design for a collider    |                                                                                                                          |  |
|                                                  |                                                                                                                                                            | # Formilah                                                                                                               |  |

## Fermilab ACE and Muon Collider

- ACE is a step in right direction (power increase at 120 GeV requires power increase at 8 GeV as muon collider needs).
- ACE infrastructure is compatible with the Muon Collider R&D needs (though needs to be expanded)
- ACE will provide an excellent platform for Muon Collider accelerator and detector R&D
- ACE Booster replacement is to be designed such that it is compatible with the Muon Collider Facility needs (also, will need to be expanded)



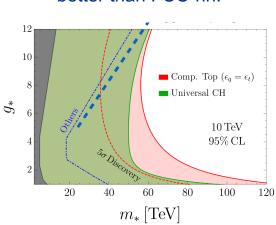
## **Booster Replacement Scenarios**

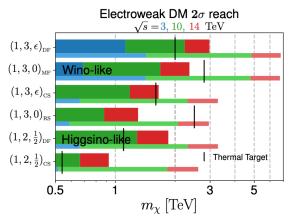

- Initial scenarios under explorations included cases where available 8 GeV power is in 1-2 MW range
- Exact parameters still to be defined, including input from the upcoming ACE physics workshops

|                  | Nominal | New RCS Scenarios |        |        | 8 GeV Linac Scenarios |        |         |
|------------------|---------|-------------------|--------|--------|-----------------------|--------|---------|
| Parameter        |         | v1                | v2     | v3     | v1                    | v2     | v3      |
| Linac Energy     | 0.8 GeV | 2 GeV             | 2 GeV  | 2 GeV  | 8 GeV                 | 8 GeV  | 8 GeV   |
| Linac Current    | 2 mA    | 2 mA              | 2 mA   | 5 mA   | 2.7 mA                | 5 mA   | 5 mA    |
| Rep. Rate        | 20 Hz   | 10 Hz             | 20 Hz  | 20 Hz  | 10 Hz                 | 10 Hz  | 20 Hz   |
| 8 GeV Beam Power | 160 kW  | 320 kW            | 960 kW | 960 kW | 320 kW                | 760 kW | 1600 kW |

| Parameter        | PIU scenarios                                         | MuC-PD scenarios                  |
|------------------|-------------------------------------------------------|-----------------------------------|
| Energy           | 8 GeV                                                 | 8-16 GeV                          |
| Rep. rate        | 10-20 Hz                                              | 5-20 Hz                           |
| Avg. beam power  | 0.3-1.6 MW                                            | 1-4 MW                            |
| Proton structure | $25-40 \text{ e}12 \text{ over } 2 \mu \text{s ring}$ | 40-120 e12 in four 1-3 ns bunches |




# **Muon Collider Physics**




Order of magnitude in Higgs precision wrt HL-LHC and can directly probe the scale implied in same machine!



Self-coupling: at 3 TeV better than LHC. At 10 TeV similar or better than FCC-hh.





Covers *simplest* WIMP candidates hard or impossible with next gen DM direct detection

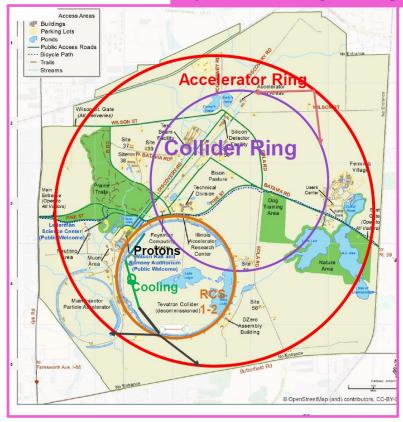
Unprecedented reach for strongly motivated BSM scenarios



### **Muon Collider at Fermilab**

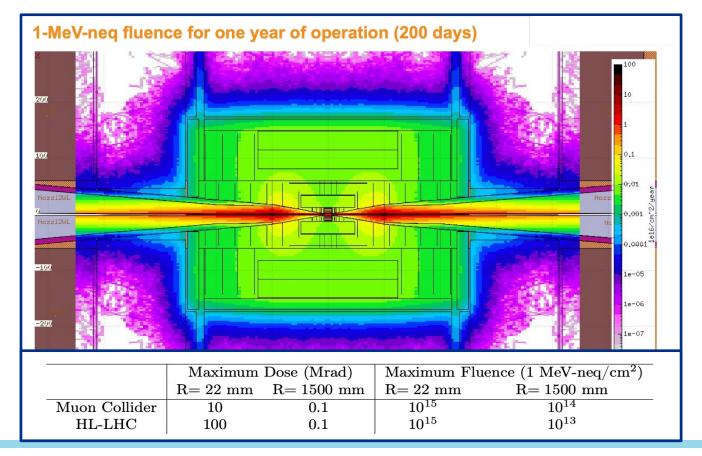
A concept of 10 TeV Muon Collider at Fermilab developed

### Proton source


• PIP-II → PIU → Target → Cooling

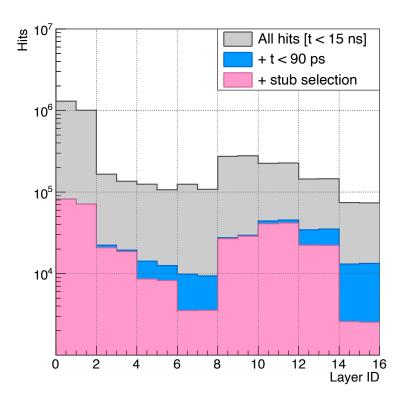
## Acceleration (3 stages)

- Linac + Recirculating Linac → 65 GeV
- Rapid Cycling Synchrotrons #1, #2 → 1 TeV (Tevatron tunnel?)
- RCS #3 → 5 TeV (site filler)
- 10 km collider ring


Various staging scenarios possible

## By D. Neuffer, [Details]






### **Radiation Levels**





## Timing and Pointing in the Pixel detector

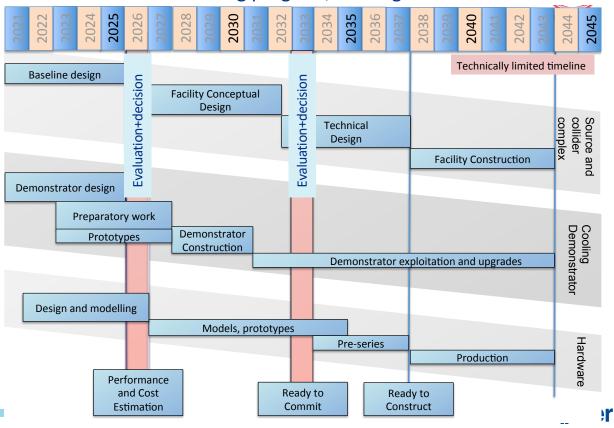




## **Muon Collider Synergies**

- Variety of Neutrino synergies:
  - Short baseline (x-sections, sterile) → Production + Storage ring
  - Long baseline neutrino factory → Production + Partial Cooling + Partial Acceleration
  - High energy neutrino cross sections → needs Collider beam
  - BSM physics → FASERv like experiment with smaller flux uncertainties
     → needs Collider beam
- Dark Sectors → High intensity proton beam
- Charged Lepton Flavor Violation → Muon production target and solenoid, possibly storage
- Beam dump experiments → Production + Cooling + Acceleration
- Muon-lon collider → Full chain with one beam




# IMCC Technically Limited Timeline

Muon collider important in the long term

Prudently explore if MuC can be **option as next project** 

- e.g. in Europe if higgs factory built elsewhere
- sufficient funding required now
- very strong ramp-up required after 2026
- might require compromises on initial scope and performance
  - 3 TeV

To be reviewed considering progress, funding and decisions



# **IMCC** Collaboration Organisation

- Collaboration Board (ICB)
  - Chair: Nadia Pastrone
- Steering Board (ISB)
  - Chair Steinar Stapnes
  - Reports to LDG but could add DOE
- Advisory Committee (IAC)
  - To be defined
- Coordination committee (CC)
  - Study Leader Daniel Schulte
  - Deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers
  - Sergo Jindariani, Mark Palmer as US links
  - Will strengthen physics and detectors

