# **BNL Particle Physics and P5**



# **Brookhaven National Laboratory**



- Assets
  - 5,000 acres, 300 buildings
- People
  - 2,800 staff, 4,400 guests/users
- Annual budget \$700 million
- High energy physics is 3<sup>rd</sup> largest program
  - \$100 million annual budget
- Nuclear Physics DOE office and Basic Energy Sciences DOE office run largest BNL facilities
  - RHIC/EIC and Light Source



Developing strong capable and inclusive workforce

## **Strong Ongoing BNL Program Enables HEP Science**

- ATLAS experiment at CERN
  - Lead Lab for U.S. ATLAS collaboration of ~800 US scientists
  - Leading US ATLAS Operations program and hosting Tier 1 computing center
- Neutrino Program at Fermilab
  - Proto-DUNE detector with BNL-developed cold electronics
  - Studying properties of neutrinos with short-baseline experiments
- Belle II experiment at KEK
  - Lead Lab for U.S. Belle II experiment in Japan
- Rubin Observatory
  - Commissioning the experiment in Chile
  - Developing computing and software for data analysis
- Theory, Detectors and Accelerators R&D



### Assembly of ATLAS muon system at CERN



### MicroBooNE sterile neutrinos



3

## Implementing 2013 P5 Program at BNL



## • Energy Frontier

- Hosting project for \$275M HL-LHC ATLAS upgrade
- Building magnets for the HL-LHC
- Developing HL-LHC computing and software
- Intensity Frontier
  - Strongly contributing to DUNE experiment
    - Leading DUNE far detector Module 2 activities
- Cosmic Frontier
  - Soon to analyze unique Rubin Observatory data
  - Building LuSEE-Night mission to the far side of the moon
- Leading Technologies Developments for Particle Physics
  - Computing and software
  - Detectors and electronics
  - Accelerators R&D including superconducting magnets
- Actively participating in the field long term future planning
  - BNL scientists submitted over 130 white papers to Snowmass

#### Brookhaven<sup>®</sup> National Laboratory

#### **HL-LHC** magnet testing at BNL



### ATLAS silicon assembly at BNL



#### **DUNE Module 2 design**



# **Synergies with BNL Programs**

- Joint experimental and theoretical efforts
  - Nuclear physics
- Accelerator applications
  - Isotope production (BLIP)
  - Space radiation studies (NSRL)
  - Industrial applications (Tandems)
- Superconducting magnets developments
  - Joint with nuclear physics and fusion
- Instrumentation Division
  - Detectors technologies
- Computing facilities
  - Joint center with nuclear physics and basic energy sciences
- Accelerator Test Facility
- QIS center

Brookhaven National Laboratory

Quantum computing applications



Accelerator Test Facility

NASA Space Radiation Lab





**BNL Hadron Accelerators Complex** 

# Synergies – Electron Ion Collider



## LHC and HL-LHC programs

- Energy frontier collider with 14 TeV center of mass energy
  - The only place to study the Higgs boson and many other elementary particles for 15+ years
  - x10 data set is yet to come
- HL-LHC brings unprecedented challenges
  - Pushing accelerators, detectors and computing technologies
- Excellent training for early career scientists
  - Analysis, detectors, operations

r**ookhaven** tional Laboratory

- BNL fully committed to HL-LHC program success
- Exciting options beyond general purpose detectors
  - Forward Physics Facility unique studies of TeV scale neutrinos and BSM physics
  - LHCb experiment upgrade studies of heavy flavor with unprecedented data set





## **Forward Physics Facility**



## **Beyond HL-LHC at the Energy Frontier**

- Consensus is to proceed to e<sup>+</sup>e<sup>-</sup> Higgs factory
  - Various options are under development FCCee, ILC, C3, CEPC and others
  - BNL is working with CERN's on FCCee option
- Reduction of cost and power consumption of such machines is critical
- Targeted R&D for both accelerators and detectors in US should be restored
  - BNL is ready to lead and partner
- Options beyond e<sup>+</sup>e<sup>-</sup> Higgs factory to reach center of mass energies beyond LHC should be pursued
  - Muon collider
  - 100 TeV pp collider









# **Neutrino Frontier**

- Timely construction of the DUNE experiment is the priority
  - Provides unprecedented potential for a wide range of scientific topics
  - BNL is committed to deliver Module 2
- Development of DUNE upgrade program is critical to pursue early implementation
  - BNL is actively engaged in physics and far detectors Modules 3 and 4 developments
- Short baseline neutrino program provides important information about neutrinos and its interactions
- Participation in accelerator and nonaccelerator-based neutrino experiments around the globe is vital for strong and balanced program







# **Precision Frontier**

- Exciting scientific insights from "small scale" facilities and experiments
- High-sensitivity search of the proton electric dipole moment
  - Electrostatic ring in AGS tunnel at BNL
- Test of lepton flavor universality
  - Via stopped pion's decay at PSI PIONEER
- Studies of Heavy quarks
  - Upgrade of Belle II experiment for polarized beams
- Excellent option to develop (and test!) new technologies and train early career scientists



2029

2034

**Proton EDM ring in AGS tunnel** 



# **Cosmic Frontier**

- Construct and operate 2013 P5 recommended experiments
  - Commissioning and operations of Vera Rubin telescope in Chile
- Execute exciting opportunities for small scale experiments
  - BNL leads joint DOE/NASA LuSEE-Night program for "Dark Ages" signal studies on the other side of the moon
- Develop plans for the next large scale spectroscopic experiments

## **Rubin Commissioning in Chile**

 Katrin Heitmann
 1:06 PM

 Most amazing ending of the session!
 Use able to capture



### LuSEE-Night on the moon







## Accelerators and Detectors R&D

- Accelerators R&D is critical to develop next generation of machines
  - Target R&D to design new HEP accelerators and colliders
  - Balanced generic R&D to investigate new ideas
- Cost and energy consumption reduction are important
  - Limits our ability to build and operate particle accelerators
  - Use of new technologies, such as high temperature superconductivity, are critical
  - BNL has unique capabilities and synergies with EIC and beyond
- Particle detectors R&D is critical
  - To enable scientific goals of the field
  - Healthy balance between specific experiments and more generic technologies developments
  - Cost efficient technologies/detectors are of high value
  - BNL leads in multiple areas in cooperation with universities and national labs partners

## BNL HTS/Hybrid common coil dipole design study



#### Students visiting BNL LAr R&D facility



AC-LGAD manufactured at BNL



Sustain and develop strong and diverse experts' community

# **Computing Frontier**

- Particle physics leads in the complexity and amount of the data collected and analyzed
- Computing requirements of HL-LHC and DUNE are substantial
  - Solving them will advance computing frontier
- Synergies with other fields and industry must be explored
  - Joint computing facilities
  - Excellent potential for AI/ML developments
  - BNL Human-AI-Facility Integration (HAI-FI)
- Support for healthy R&D efforts is critical
  - Including to address requirements of the next generation of experiments and theory
- BNL is a leader and strong partner in providing computing support for current experiments and developing future ideas

## Computing challenges of LHC and DUNE



### New BNL computing facility for ATLAS, RHIC and Belle II





# **National Initiatives**

- HEP is strongly contributing and benefiting from the national initiatives
- AI/ML initiative
  - AI/ML tools are used in HEP for decades, including for discoveries
  - Particle physics is in excellent position to contribute and benefit from industrial scale AI/ML developments
  - Excellent potential in all frontiers: energy, neutrinos, rare processes, cosmic, theory and others
- QIS initiative
  - Quickly developing area with substantial potential
  - Active engagement in various fields, industry, defense
  - HEP has unique expertise, including in detection of quantum states
  - Need to develop coherent program beyond initial QuantISED HEP initiative
- Microelectronics
  - Area where HEP and BNL led, including ASIC operations at cryo temperatures, for decades
  - Developing coherent strategy for the field active engagement in this initiative is critical



### AI/ML tools are used in Higgs studies

### **Quantum astrometry**



### **BNL Microelectronics Laboratory**



# **Diversity, Equity, Inclusion and Accessibility**

- Inclusive environment and diverse workforce are crucial for the field and for BNL to successfully pursue our mission
- Deeply committed to DEI improvements
  - Members of DEI committees throughout the laboratory
  - Active involvement in mentoring and workforce development
  - Commitment to STEM outreach and pipeline development, supporting MSIs for RENEW and FAIR
  - Developed hiring practices guidelines
  - Periodically performing surveys to learn and adjust
  - Leading African School of Physics

National Laborator

- Established mentoring programs for post-docs, early career scientists and engineers, and STEM training
- Brookhaven makes the Top 20 Government Employer List for 2023 in the 32nd Annual Equal Opportunity Magazine





# **BNL Involvement**



- Successfully **complete 2014 P5 program**, including
  - International **HL-LHC program** to provide exciting results on the wide range of the field science drivers
  - Execute **international DUNE program** to study neutrinos, universe and the proton lifetime
  - Uncover the mysteries of the universe with **Rubin observatory**
  - Execute healthy array of small and medium scale experiments
- Develop strong program for the future
  - Develop strong foundations for an international Higgs factory
    - And develop accelerators to reach **next energy frontier beyond the LHC**
  - Re-fill the pipeline of small and medium scale experiments
  - Accelerator, Detector and Computing R&D efforts and theory initiatives
  - Balanced program of research, operations and construction with strong participation of universities, national labs and international partners

Develop, train and support a diverse workforce