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Standard introduction

HERA total v* + p cross section data: parton densities ~ x~
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Non-linear QCD effects at small x (e.g. gg — g) should tame this growth
= Saturated state of gluonic matter at small x and moderate Q2 or I\/I)2<
Color Glass Condensate: effective theory of QCD in the high-density region
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Probing high density gluonic matter in DIS: CGC and dipole picture

Inclusive cross section Diffractive processes

Optical theorem:
oTP ~ U RWER N
~ dipole N ~ “gluon structure”

@ Exclusive process:
A~ [d?be ®2¥* @V, @ N

@ Dipole picture at high energy: v* — qg fluctuation has a long lifetime = factorization

@ Dipole amplitude N: eikonal propagation in the color field, resumming multiple scattering
Center-of-mass energy dependence perturbative: BK/JIMWLK
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Vector meson production: v*+p — J/i + p

@ Need at least 2 gluons for exclusivity, very sensitive probe

DAVAYAYYY.
@ Momentum transfer measurable, conjugate to geometry
; @ Coherent cross section ~ average spatial distribution of
D gluons at small x

Scattering amplitude in dipole picture

* d . = -
_iATASVA / PbalryZ P BUI(r, 2)No(r, b, YU (v, 2)

da.coherent 1 < A VA>

dr 167 =

A particular advantage of the dipole picture:
simultaneous descrpition of inclusive and diffractive observables
using the same degrees of freedom

Heikki Mantysaari (JYU)



Coherent and incoherent diffraction

[Coherent il Incoherent

2 2 2
Ocoherent ™~ |<~A>Q‘ Oincoherent ™~ (‘A‘ >Q - |<~A>Q‘
@ Proton stays intact @ Proton dissociates
Probes the average interaction Event-by-event fluctuations in the
= average shape ) amplitude ~ proton geometry

@ Experimental signature: rapidity gap
@ Theoretically: no net color transfer

@ Average over target configurations 2 at amplitude/cross section level

A,Y*p_>\/p ~ /dzbdder\U”/*\UV(M,z, Qz)e_ib'AN(|r|>X7 b,Q)

Miettinen, Pumplin, PRD 18, 1978; Caldwell, Kowalski, 0909.1254; H.M, Schenke, 1603.04349; H.M, 2001.10705
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Why diffractive minima
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Armesto, Rezaeian, 1402.4831

Get diffractive minima when
<A7*A—>VA> ~ fdzbe_fb'AN(r, b) =0
Protons:
e Hard sphere: N(r,b) ~ 6(b— Ry): diffractive minima
when Ji(Ry+/|t]) = 0 (first around |t| ~ 1 GeV?)
o Gaussian&linear: N(r, b) ~ e ?/(2B). FT Gaussian
o Gaussian&non-linear: N(r,b) ~ 1 — exp (—e‘b2/(23)):
dips at large |t|
Whether there are diffractive dips depends on
@ Actual density profile

@ Non-linear dynamics
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Accessing proton dips

do/d|t| [nb/GeV?]

do/dt [ob/GeV?|
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@ Incoherent (proton dissociates) dominates at
|t| > 1GeV?

@ Observing dips requires one to suppress incoherent
background by 2...3 orders of magnitude

@ In principle detecting the forward proton that receives
quite high pt kick is feasible?

@ Even if can’t see the dips, pushing coherent spectra
measurements towards high |t| important: probe
potential deviations from the Gaussian profile

H.M, Schenke, 1607.01711; H.M, Salazar, Schenke, 2207.03712

Here CGC = MV model with Q52(b) from IPsat + JIMWLK




Complementary channel

- diffractive structure functions

107 “=--olf E

[nb/GeV]
s
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L MV4,04<w<18

- MV, wop = 138
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@ Structure functions ~ proton area
o Diffractive structure functions ~ [ d?b| T (b)|?

@ Inclusive and diffractive data simultaneously:
complementary method to constrain the proton shape,

02 .
@ Gev?) ' non-Gaussian form preferred
— w=15 >
----= Gaussian r <l7 RbT)
Step function _ w pW
Tp(b) = ——4—

re

o FT with w > 1: no dips
@ Band: 04 <w< 17
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Light ions: deutero

How are the small-x gluons distributed in deuteron?

Deuteron, proton-neutron separation d,,

Use two different wave functions with same RMS size

o Hulthen: Miller et al, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205

e—2%n _ a—bdpn
W) ~
pn

@ Argonne V18 two-nucleon potential
Wiringa, Stoks, Schiavilla, phy.anl.gov/theory/research/density2

Includes repulsive short range correlations

Constrained by low-energy datal
EIC: how about small-x?
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@ Short range correlations have a
significant effect in deuteron

@ Can affect exclusive spectra at
large |t| (small distance)
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Predictions for the EIC: deuteron wave function

Y4d— J/V+d Q*=0GeV? .
— : : : Hulthen vs Argonnevl8 wave functions:

10% ‘
- figonne o Coherent spectra at |t| > 0.3GeV 2

sensitive to short range correlations in WF
o Difference similar also after the JIMWLK
evolution, but dips — smaller ||

—

Incoherent

,_
|

@ Note: same RMS sizes, dip position differs
due to different shapes

2

do /dt [nb/GeV?
=

. @ Tiny effect on the incoherent cross section
IPsat

LT T @ Observing the dip would require a huge

L L L n A
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] [GeV?] reduction of the incoherent background

H.M, Schenke, 1910.03297
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eavy nuclei

do/dydp? [mb/GeV?]

LHC data = v+ Pb
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H.M, Salazar, Schenke, 2207.03712

Large A: dips are at very small t

@ ALICE, LHCb have measured in this t range

Non-linear dynamics important (xp ~ 0.0006):
Form factor = linearized calculation
Saturation effects modify the t spectra — including
the dip location

o Extreme black disck limit: step function
Here non-zero photont k1 washes out the dip
Also small interference effect at p2T ~0
EIC: in principle can remove the photon k1 by
measuring the outgoing electron.
How accurately in practice?
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Photon k7 effect

103 Pb+Pb—Pb+Pb+J/4
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Gluonic size of heavy nuclei

do/dydp? [mb/GeV?)
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H.M, Salazar, Schenke, 2207.03712

As seen on previous slide: ALICE data is more
steeply falling than the CGC calculation

Seems that in addition to non-linear effects would
need a larger Pb

Also larger Au compared to standard value observed
in UPCs at STAR 2204.01625

Differences small in the ALICE kinematics, but
grow rapidly when approaching the first dip

Here photon k7 smoothens the dip, at the EIC it
will be sharp(er)
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Distribution of small-x gluons from spectra
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H.M, Salazar, Schenke, 2207.03712

Normalization
fdzb Ta(b)=A

10

@ b is Fourier conjugate to impact parameter

dgv*+Pb—J/4+Pb

)~ [ d“JO(bA)(_l)n\/ i

@ Here: Woods-Saxon input at xp = 0.01 + JIMWLK
Non-linear dynamics included

@ Transition towards a black disc profile at the center

o Larger nuclei at small-x after JIMWLK evolution
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Does the incoherent process dominate?

UPC~ v+ Pb
Pb+Pb — J/U + Pb + Pb, /s = 5.02TeV,y = 0 . . .
10° @ In order to see more diffractive dips a large

—— Geometric and (), fluctuations in the nucleons

= Nosubnucleon fluctuations suppression of incoherent contribution is necessary

102

@ Chang, Aschenauer et al, 2108.01694: can resolve
at least the first minimum of the coherent
diffractive distribution

10!

10"

do /dtdy [mb/GeV?]

- @ Still 10 years to tune analysis techniques...

@ Nucleon substructure fluctuations enhanced
incoherent cross section at |t| > 0.2 GeV?, no
effect in the region or the first few dips

1072
0.0

H.M, Schenke, 1703.09256
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Accessing defomred structure of the uranium at the EIC

B3 Ba
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o Diffractive dips insensitive to potential deformations at small-x

@ Non-spherical structure increases incoherent cross section at low |t| and limits how well
coherent spectra can be measured H.M, Schenke, Shen, Zhao, in preparation
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Deformations survive to small-x

e U Jwae U ]
E0.18F L p,~0.50 £

r 2 ]
20.16f 2200 .
£0.16F . B2-0.00 :

o Deformed uranium shape at initial xp = 1.7 - 1073

o JIMWLK evolution towards small xp
. Constrained by HERA data

4 e Cross section ratio sensitive to 3, even after 2
1078 104 1078 orders of magnitude xp evolution
Xp
t| < 0.5GeV?

H.M, Schenke, Shen, Zhao, in preparation

Heikki Mantysaari (JYU)



Conclusions

@ Coherent spectra sensitive to details of the

o Proton/nuclear spatial density profile
o Non-linear dynamic
o These two are tightly connected!

e Important: precision and as wide |t| range as possible
@ Proton: not sure if there are dips, potential to extract e.g. possibly non-Gaussian shape

o Light ions: deviations from low-energy structure, short range correlations, nuclear
structure physics at high energies (alpha clustering, ...)

@ Heavy ions: strong non-linear effects expected

@ Deformations: connecting low- and high-energy nuclear physcis at the EIC
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Backups
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Energy dependence of the deuteron structure

y+d— J)U+d Q*=0GeV?
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H.M, Schenke, 1910.03297
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