Diffractive vector meson production and dips

Heikki Mäntysaari

University of Jyväskylä, Department of Physics Centre of Excellence in Quark Matter Finland

16.2.2023

Heikki Mäntysaari (JYU)

Dips

HELSINKLINSTITUTE OF PHYSICS

Standard introduction

HERA total $\gamma^* + p$ cross section data: parton densities $\sim x^{-\lambda}$, eventually violates unitarity

Non-linear QCD effects at small x (e.g. $gg \rightarrow g$) should tame this growth \Rightarrow Saturated state of gluonic matter at small x and moderate Q^2 or M_X^2 Color Glass Condensate: effective theory of QCD in the high-density region

Probing high density gluonic matter in DIS: CGC and dipole picture

- Dipole picture at high energy: $\gamma^* \to q \bar{q}$ fluctuation has a long lifetime \Rightarrow factorization
- Dipole amplitude N: eikonal propagation in the color field, resumming multiple scattering Center-of-mass energy dependence perturbative: BK/JIMWLK

Vector meson production: $\gamma^* + p \rightarrow J/\psi + p$

- Need at least 2 gluons for exclusivity, very sensitive probe
 - Momentum transfer measurable, conjugate to geometry
 - Coherent cross section \sim average spatial distribution of gluons at small x

Scattering amplitude in dipole picture

$$-i\mathcal{A}^{\gamma^*A\to V\!A} \sim \int \mathrm{d}^2 \mathbf{b} \mathrm{d}^2 \mathbf{r} \frac{\mathrm{d}z}{4\pi} e^{-i\mathbf{b}\cdot\mathbf{\Delta}} \Psi_{\gamma^*}^{q\bar{q}}(\mathbf{r},z) \mathcal{N}_{\Omega}(\mathbf{r},\mathbf{b},Y) \Psi_{V}^{q\bar{q}*}(\mathbf{r},z)$$

$$\frac{\mathrm{d}\sigma^{\mathrm{coherent}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \langle \mathcal{A}^{\gamma^* \mathcal{A} \rightarrow \mathit{V}\!\mathcal{A}} \rangle_\Omega \right|^2$$

A particular advantage of the dipole picture: simultaneous descrpition of inclusive and diffractive observables using the same degrees of freedom

Coherent and incoherent diffraction

Coherent

$\sigma_{ m coherent} \sim |\langle {\cal A} angle_{\Omega}|^2$

• Proton stays intact

Probes the average interaction

 \Rightarrow average shape

- Experimental signature: rapidity gap
- Theoretically: no net color transfer
- Average over target configurations Ω at amplitude/cross section level

$$\mathcal{A}^{\gamma^* p o V p} \sim \int \mathrm{d}^2 \mathbf{b} \mathrm{d}z \mathrm{d}^2 \mathbf{r} \Psi^{\gamma *} \Psi^V(|\mathbf{r}|, z, Q^2) \mathbf{e}^{-\mathbf{i} \mathbf{b} \cdot \Delta} \mathcal{N}(|\mathbf{r}|, x, \mathbf{b}, \Omega)$$

Miettinen, Pumplin, PRD 18, 1978; Caldwell, Kowalski, 0909.1254; H.M, Schenke, 1603.04349; H.M, 2001.10705

Heikki Mäntysaari (JYU)

Incoherent

$$\sigma_{
m incoherent} \sim \langle |\mathcal{A}|^2
angle_{\Omega} - |\langle \mathcal{A}
angle_{\Omega}|^2$$

16.2.2023

- Proton dissociates
- Event-by-event fluctuations in the amplitude \sim proton geometry

Why diffractive minima

Armesto, Rezaeian, 1402.4831

Get diffractive minima when $\langle \mathcal{A}^{\gamma^* A \to V A} \rangle \sim \int d^2 \mathbf{b} e^{-i\mathbf{b}\cdot\Delta} N(\mathbf{r}, \mathbf{b}) = 0$ Protons:

- Hard sphere: $N(r, b) \sim \theta(b R_p)$: diffractive minima when $J_1(R_p\sqrt{|t|}) = 0$ (first around $|t| \sim 1 \text{ GeV}^2$)
- Gaussian&linear: $\mathit{N}(r,b) \sim e^{-\mathbf{b}^2/(2B)}$: FT Gaussian
- Gaussian&non-linear: $N(\mathbf{r}, \mathbf{b}) \sim 1 \exp\left(-e^{-\mathbf{b}^2/(2B)}\right)$: dips at large |t|

Whether there are diffractive dips depends on

- Actual density profile
- Non-linear dynamics

Accessing proton dips

- Incoherent (proton dissociates) dominates at $|t|\gtrsim 1\,{
 m GeV}^2$
- Observing dips requires one to suppress incoherent background by 2...3 orders of magnitude
- In principle detecting the forward proton that receives quite high p_T kick is feasible?
- Even if can't see the dips, pushing coherent spectra measurements towards high |t| important: probe potential deviations from the Gaussian profile

H.M, Schenke, 1607.01711; H.M, Salazar, Schenke, 2207.03712

Here CGC = MV model with $Q_s^2(\mathbf{b})$ from IPsat + JIMWLK

Complementary channel: diffractive structure functions

- $\bullet\,$ Structure functions $\sim\,$ proton area
- Diffractive structure functions $\sim \int \mathrm{d}^2 \bm{b} |\, \mathcal{T}(\bm{b})|^2$
- Inclusive and diffractive data simultaneously: complementary method to constrain the proton shape, non-Gaussian form preferred

$$T_{p}(b) = rac{\Gamma\left(rac{1}{\omega},rac{b^{2}}{R_{p}^{2}\omega}
ight)}{\Gamma\left(rac{1}{\omega}
ight)},$$

- FT with $\omega > 1$: no dips
- Band: 0.4 $< \omega < 1.7$

Lappi, Le, H.M, in preparation

Light ions: deuteron

How are the small-x gluons distributed in deuteron?

Deuteron, proton-neutron separation d_{pn}

Use two different wave functions with same RMS size

• Hulthen: Miller et al, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205

$$\phi(d_{ extsf{pn}}) \sim rac{e^{-ad_{ extsf{pn}}}-e^{-bd_{ extsf{pn}}}}{d_{ extsf{pn}}}$$

• Argonne V18 two-nucleon potential

Wiringa, Stoks, Schiavilla, phy.anl.gov/theory/research/density2 Includes repulsive short range correlations

Constrained by low-energy data! EIC: how about small-x?

- Short range correlations have a significant effect in deuteron
- Can affect exclusive spectra at large |t| (small distance)

H.M, Schenke, 1910.03297

Hulthen vs Argonnev18 wave functions:

- Coherent spectra at $|t|\gtrsim 0.3 {\rm GeV}^{-2}$ sensitive to short range correlations in WF
- Difference similar also after the JIMWLK evolution, but dips \rightarrow smaller |t|
- Note: same RMS sizes, dip position differs due to different shapes
- Tiny effect on the incoherent cross section
- Observing the dip would require a huge reduction of the incoherent background

Heavy nuclei

H.M, Salazar, Schenke, 2207.03712

- Large A: dips are at very small t
- ALICE, LHCb have measured in this t range
- Non-linear dynamics important (x_P ≈ 0.0006): *Form factor* = linearized calculation
- Saturation effects modify the *t* spectra including the dip location
 - Extreme black disck limit: step function
- Here non-zero photont k_T washes out the dip Also small interference effect at $p_T^2 \approx 0$
- EIC: in principle can remove the photon k_T by measuring the outgoing electron. How accurately in practice?

Photon k_T effect

- UPC: Not possible to separately determine the photon $k_T \sim Q$
- ALICE: extract $\gamma + Pb$ cross section from Pb + Pb using Monte Carlos
- CGC calculation: good agreement with $\gamma + Pb$ data except at smallest |t|, but too hard spectrum in Pb + Pb
- ALICE: steeper spectrum in Pb + Pb with photon k_T Opposite systematics in our theory calculation

Important advantage at the EIC: measure outgoint electron \Rightarrow photon k_T

Dips

Gluonic size of heavy nuclei

H.M, Salazar, Schenke, 2207.03712

- As seen on previous slide: ALICE data is more steeply falling than the CGC calculation
- Seems that in addition to non-linear effects would need a larger Pb
- Also larger Au compared to standard value observed in UPCs at STAR 2204.01625
- Differences small in the ALICE kinematics, but grow rapidly when approaching the first dip
- Here photon k_T smoothens the dip, at the EIC it will be sharp(er)

Normalization $\int d^2 \mathbf{b} T_A(\mathbf{b}) = A$

• **b** is Fourier conjugate to impact parameter

$$\mathcal{T}_{\mathcal{A}}(\mathbf{b})\sim\int\mathrm{d}\Delta\,\Delta J_0(b\Delta)(-1)^n\sqrt{rac{\mathrm{d}\sigma^{\gamma^*+\mathrm{Pb}
ightarrow\mathrm{J}/\psi+\mathrm{Pb}}{\mathrm{d}|t|}}$$

- Here: Woods-Saxon input at $x_{\mathbb{P}} = 0.01 + \text{JIMWLK}$ Non-linear dynamics included
- Transition towards a black disc profile at the center
- Larger nuclei at small-x after JIMWLK evolution

H.M, Schenke, 1703.09256

- In order to see more diffractive dips a large suppression of incoherent contribution is necessary
- Chang, Aschenauer et al, 2108.01694: can resolve at least the first minimum of the coherent diffractive distribution
- Still 10 years to tune analysis techniques...
- Nucleon substructure fluctuations enhanced incoherent cross section at $|t| \gtrsim 0.2 \, {\rm GeV}^2$, no effect in the region or the first few dips

Accessing defomred structure of the uranium at the EIC

- Diffractive dips insensitive to potential deformations at small-x
- Non-spherical structure increases incoherent cross section at low |t| and limits how well coherent spectra can be measured
 H.M., Schenke, Shen, Zhao, in preparation

Deformations survive to small-x

H.M, Schenke, Shen, Zhao, in preparation

- Deformed uranium shape at initial $x_{\mathbb{P}} = 1.7 \cdot 10^{-3}$
- JIMWLK evolution towards small x_ℙ Constrained by HERA data
- Cross section ratio sensitive to β₂ even after 2 orders of magnitude x_P evolution

- Coherent spectra sensitive to details of the
 - Proton/nuclear spatial density profile
 - Non-linear dynamic
 - These two are tightly connected!
- Important: precision and as wide |t| range as possible
- Proton: not sure if there are dips, potential to extract e.g. possibly non-Gaussian shape
- Light ions: deviations from low-energy structure, short range correlations, nuclear structure physics at high energies (alpha clustering, ...)
- Heavy ions: strong non-linear effects expected
- Deformations: connecting low- and high-energy nuclear physcis at the EIC

Backups

Energy dependence of the deuteron structure

H.M, Schenke, 1910.03297