Constraints and unconstraints for nuclear gluons from the LHC

Hannu Paukkunen

University of Jyväskylä, CoE in Quark Matter Helsinki Institute of Physics

1st Int. Workshop on a 2nd Detector for the EIC, May 19th 2023

1ST INTERNATIONAL WORKSHOP ON A 2ND DETECTOR FOR THE ELECTRON-ION COLLIDER

Temple University, Philadelphia, PA May 17-19, 2023

- The variety & precision of data begins to be high enough to challence the picture of collinear factorization and to look for e.g.
 - onset of non-linear dynamics
 - partonic energy loss
 - collectivity in small systems
 - -----

in p-Pb type collisions

- Non-factorizable non-universal effects should become visible in global fits, $\chi^2/N_{\rm data}\gg 1$
- Global analysis of nuclear PDFs can be seen as a search for these effects – not something that overlooks them

Comparison of current nuclear gluons vs. EIC projections

• Nuclear modification of gluons $R_g^{\rm Pb}(x,Q^2) = g^{\rm Pb}(x,Q^2)/Ag^p(x,Q^2)$

- At small-x the EIC projections look comparable to precision of recent global fits
- How do we end up with the current gluon PDFs? Can we trust them?

• The CMS p-Pb 8.16TeV W[±]-bosons [PHYS.LETT.B 800 (2020) 135048] vs. EPPS16 and EPPS21

- At the parametrization scale these data constrain almost exclusively gluons [EUR.PHYS.J.C 82 (2022) 3, 271]
- Long lever arm in rapidity helps to tame the normalization uncertainty

The CMS p-Pb 8.16TeV Z bosons [JHEP 05 (2021) 182] vs. nuclear PDFs

• Large fluctuations around $y = 0 \implies$ Forward-to-backward ratio does not tend to unity

• $\chi^2/N_{\rm data} \sim 2$ – fitting nor NNLO corrections help here

• A precision dijet observable by CMS [PHYS.Rev.Lett. 121 (2018) 6, 062002]

$$\frac{d^2 \sigma^{\rm pp}}{d p_{\rm T}^{\rm ave} d \eta_{\rm dijet}} \left(\frac{d \sigma^{\rm pp}}{d p_{\rm T}^{\rm ave}}\right)^-$$

• NLO QCD differs significantly from the data. NNLO? Resummation due to smallish cone R = 0.3?

• A precision dijet observable by CMS [PHYS.Rev.Lett. 121 (2018) 6, 062002]

$$\frac{d^2 \sigma^{\rm pp}}{l p_{\rm T}^{\rm ave} d \eta_{\rm dijet}} \left(\frac{d \sigma^{\rm pp}}{d p_{\rm T}^{\rm ave}}\right)^-$$

Can improve (but not cure) the description by refitting the proton PDFs (reweighting/profiling)

• A precision dijet observable by CMS [PHYS.Rev.Lett. 121 (2018) 6, 062002]

$$\frac{d^2 \sigma^{\rm pPb}}{dp_{\rm T}^{\rm ave} d\eta_{\rm dijet}} \left(\frac{d\sigma^{\rm pPb}}{dp_{\rm T}^{\rm ave}}\right)^{-1}$$

• The p-Pb data show similar differences w.r.t NLO calculation as p-p

EPPS21 and nNNPDF3.0 fit these data except the most forward data points

EPPS21 and nNNPDF3.0 fit these data except the most forward data points

The potential of heavy-flavour as a nuclear gluon constraint understood

[KUSINA ET.AL. PHYS.REV.LETT. 121 (2018) 5, 052004 ; ESKOLA ET.AL. JHEP 05 (2020) 037]

- Differing theoretical setups:
 - Fixed-order + Pythia parton shower [Frixione et.al. JHEP 0709, 126] Used in nNNPDF fits
 - General-mass variable-flavour-number scheme (GM-VFNS) Used in EPPS fits [KNIEHL ET.AL PRD71, 014018; HELENIUS, PAUKKUNEN, JHEP 1805 (2018) 196]
 - Matrix-element fitting [Lansberg, Shao, EUR.PHys.J.C 77 (2017) 1, 1] Used in nCTEQ fits

Open heavy-flavour in GM-VFNS

Fixed-order calculation

General-mass variable-flavour-number scheme

• EPPS fits use the NLO SACOT-m_T GM-VFNS [HELENIUS, PAUKKUNEN, JHEP 1805 (2018) 196]

$\bullet\,$ LHCb p-p cross sections well reproduced by the SACOT- $m_{\rm T}$ approach

• Sizable theory uncertainties at low $p_{\rm T}$ – most cancel in $\sigma_{\rm pPb}/\sigma_{\rm pp}$

• Good fit across a wide range of rapidity – no sign of e.g. non-linear effects at small-x

• Brand new results with the SACOT- $m_{\rm T}$ scheme! 😹

- The data prefer a stronger \sqrt{s} dependence in the backward direction in particular
- Experimental result uses an interpolated p-p reference

• Brand new results with the SACOT- $m_{\rm T}$ scheme! 😹

• The p-p baseline well reproduced within the uncertainties

Brand new results with the SACOT-m_T scheme!

Both EPPS21 and nNNPDF3.0 do a good job – more statistics needed for quantitative constraints

Nuclear PDFs from exclusive J/ψ production in Pb-Pb?

• Exclusive J/ψ production very sensitive to nuclear PDFs quarks enter at NLO $\mathcal{M}^{AA \to AA + J/\psi} \sim f^A_{\text{gluon}}(\mu) \otimes T_g(\mu) + f^A_{\text{guark}}(\mu) \otimes T_g(\mu)$ [Eskola et.al., Phys.Rev.C 106 3, 035202 + Phys.Rev.C 107 4, 044912] NLO at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ WW EPPS21 $\mu = \mu_{\theta} = \mu_{\theta}$, $[\mu] = GeV$ nCTEO15WZSIH EPPS21: $\mu = 2.39$ nNNPDF3.0 $[\operatorname{dm}](dq + m/l + dq)$ nNNPDF3.0: $\mu = 2.22$ EPPS21 Err nCTEO15WZSIH Err nCTEO15WZSIH: $\mu = 2.02$ nNNPDF3.0 Err $T_i(x,\xi)$ $\langle O_1 \rangle$ dd (Pb + Pb -ALICE Cent ALICE Forw LHCb 2015 LHCb 2018 $F^i(x,\xi,t)$ CMS 2022 -6

• Generalized PDFs approximated here by PDFs and scales tuned to match the y = 0 data

Nuclear PDFs from exclusive J/ψ production in Pb-Pb?

• Exclusive J/ψ production very sensitive to nuclear PDFs quarks enter at NLO $\mathcal{M}^{AA \to AA + J/\psi} \sim f^A_{gluon}(\mu) \otimes T_q(\mu) + f^A_{quark}(\mu) \otimes T_q(\mu)$ [Eskola et.al., Phys.Rev.C 106 3, 035202 + Phys.Rev.C 107 4, 044912] WW $Full |M|^2$ NLO with EPPS16 $\sqrt{S_{NN}} = 5.02 \text{ TeV}$ Only Gluons $\frac{d\sigma}{dy}$ (Pb+Pb \rightarrow Pb+//\Psi+Pb) [mb] $\mu_{\rm F} = \mu_{\rm R} = 2.37 \,\,{\rm GeV}$ Only Ouarks Interference 3-2 $T_i(x,\xi)$ $\langle O_1 \rangle$ \mathbf{Pb} $F^i(x,\xi,t)$ -1-6 -4 -2 v

• Perturbatively unstable: only gluons at LO – quarks dominate at NLO! What happens at NNLO?

Nuclear PDFs from exclusive J/ψ production in Pb-Pb?

• nCTEQ15WZSIH reproduces the shape due to its hugely enhanced strange-quark PDFs! 😜

Summary

- Discussed some recent (but not all) LHC data relevant for nuclear gluons:
 - CMS 8 TeV W^{\pm}
 - CMS 8 TeV Z
 - CMS double diff. dijets
 - LHCb double diff. D and B mesons
 - Exclusive J/Ψ production

- → indirect sensitivity
- → indirect sensitivity

the data are inconsistent with nuclear PDFs

direct sensitivity

systematic anomalies in the most forward data points

direct sensitivity

8 TeV y < 0 D^0 data not compatible with nuclear PDFs

→ direct sensitivity?

standard QCD calculations unstable

 More work and data required to make sure that we are not shoveling non-factorizable effects into nuclear PDFs – EIC will ultimately tell