(Di-)jets \& Di-hadrons from HI studies to ep and eA [some liberties taken on definitions]

1st International Workshop on a 2nd Detector for the Electron-Ion Collider

Helen Caines, Wright Lab, Yale

Di-jets and di-hadrons in Yellow Report

Too many topics to cover in 20 mins includes:

Access to the gluon Wigner distribution, Probing the linearly polarized Weizsaecker-Williams gluon TMDs
Probing the gluon Sivers function
Exploring the (un)polarized hadronic structure of the photon
Constraining (un)polarized quark and gluon PDFs at moderate to high momentum fraction (x)
Studies of hadronization and cold nuclear matter properties
In this talk I will focus on topics on which I have expertise/ knowledge as a HI physicist
plus studies with recent results from RHIC and LHC

Kinematics and Properties of Jets at EIC

Jets:
$\mathrm{p}_{\mathrm{T}}<20 \mathrm{GeV} / \mathrm{c}$
~2 jets per event
~5-10 particles per jet
Largely studying nonperturbative regime/ hadronization

B. Page et al. PRD 101, 072003 (2020)

Kinematics and Properties of Jets at EIC

Jets:
PT $^{2} 20 \mathrm{GeV} / \mathrm{c}$
~2 jets per event
$\sim 5-10$ particles per jet
Largely studying nonperturbative regime/ hadronization

Larger R:

Better representation of partonic kinematics More UE included

RHIC and LHC usually anti-kT with E-scheme:

Since EIC reasonably "empty" choice not critical

Kinematics and Properties of Di-jets at EIC

B. Page et al. PRD 101, 072003 (2020)

Underlying Event at RHIC

At mid rapidity UE for jet $\mathrm{p}_{\mathrm{T}}>15 \mathrm{GeV} / \mathrm{c}$ Average charged particle density $=0.4-0.6$ Mean $\mathrm{p}_{\mathrm{T}}=0.5-0.7 \mathrm{GeV} / \mathrm{c}$ Largely independent of jet \boldsymbol{p}^{2}

$$
\begin{aligned}
& \text { For jet with } \mathrm{R}=0.4 \text { : } \\
& \text { Charged particle contamination } \\
& \text { from UE } \sim 150 \mathrm{MeV}
\end{aligned}
$$

Underlying Event at EIC

EIC measurements will be over large rapidity

- Need to check on UE rapidity dependence
- Potential solution to use off-axis technique

UE for jet $\mathrm{p}_{\mathrm{T}}>5 \mathrm{GeV} / \mathrm{c}$
Average charged particle density $=0.1-0.2$

Mean $p_{T}=1-1.2 \mathrm{GeV} / \mathrm{c}$ (p_{T} of UE increased because using Breit frame)

For jet with $\mathrm{R}=0.4$:
Charged particle contamination from UE $\sim 80 \mathrm{MeV}$

Detector Requirements for (Di-)jets at EIC

Hermetic detector

Tracking:

- efficient with excellent momentum and angular resolution
- large range of rapidity [jets only back-to-back in azimuth]
- single hadrons $\mathrm{p}_{\mathrm{T}}>100 \mathrm{MeV} / \mathrm{c}$
- $3 \sigma \pi / K / p$ B: up to $7 \mathrm{GeV} / c$, C: up to $10 \mathrm{GeV} / \mathrm{c}$, F : up to $50 \mathrm{GeV} / \mathrm{c}$, [species dependent FF]

Electromagnetic calorimetry:

- Resolution: $\mathrm{B}: ~ \sigma(E) / E \approx 2 \% / \sqrt{ } E \oplus 1-3 \%$ [drives jet performance capabilities], $\mathrm{C}: ~ \sigma(E) / E \approx 10-12 \% / \sqrt{ } E \oplus 1$ -3% [sufficient, take advantage of excellent tracking], $F: \sigma(E) / E \approx 4.5 / \sqrt{ } E$

Hadron calorimetry:

- Neutral hadron isolation [important for jet energy scale and resolution, especially F and B]
- Resolution: $\mathrm{B}: \sigma(E) / E \approx 50 \% / \sqrt{ } E \oplus 6 \%, \mathrm{C}: \sigma(E) / E \approx 85 \% / \sqrt{ } E \oplus 7 \%, \mathrm{~F}: \sigma(E) / E \approx 35 \% / \sqrt{ } E$
- Minimum energy: $500 \mathrm{MeV} / \mathrm{c}$

Gluon Saturation

$Q_{s} \propto A^{1 / 3}:$
More suppression for heavier nuclei

Rapid increase of gluon density as lower x

- saturation when splitting rate matches rate of recombination
- saturation scale at Q_{s}

Gluon Saturation

$Q_{s} \propto A^{1 / 3}:$
More suppression for heavier nuclei
Forward for low-x

Rapid increase of gluon density as lower x

- saturation when splitting rate matches rate of recombination
- saturation scale at Q_{s}

D.Kharzeev et al. NPA 748, 627 (2005)

Di-pi Correlations at RHIC

Suppression in pA:

- Dependence on A
- Dependence on EA (related to but not b)
- Only at low DT $^{\text {T }}$
- No broadening

Di-pi Correlations at RHIC

Suppression in dAu:

- Only at low p_{T}
- Only in central events

Suppression in pA:

- Dependence on A
- Dependence on EA (related to but not b)
- Only at low DT $^{\text {т }}$
- No broadening

Hints of reaching saturation at RHIC

- 2024: unique opportunity with STAR forward upgrades

STAR: PRL 129, 092501 (2022)
PHENIX: PRL 107, 172301 (2011)

Opportunities at the EIC

Events with inelasticity $0.6<y<0.8$
Pairs $|\eta|<3.5$
Integrated luminosity $10 \mathrm{fb}-1 / \mathrm{A}$ stat uncertainties smaller than markers

RHIC

- Similar Moderate-Q²-Iow x
- Similar collision energy
- Complimentary probes (e vs p)

LHC

- High Q2 - low x
- Complimentary probes (e vs p)

EIC

- Study wide range of ion beams from deuterons to heavy nuclei (Au, Pb, U)

Definitive measurements at EIC?

Jet Deflection in HI Collisions

Scattering off "quasi-particle" in medium results in deflection of jet Recoil jet no longer acoplanar (back-to-back)

Jet Deflection in HI Collisions

Scattering off "quasi-particle" in medium results in deflection of jet Recoil jet no longer acoplanar (back-to-back)

STAR: Y. Hu HP 2023 ALICE: Y. Hou HP 2023

Jet Deflection in HI Collisions

Scattering off "quasi-particle" in medium results in deflection of jet Recoil jet no longer acoplanar (back-to-back)

Acoplanarity in A-A due to scattering or medium response to jet?

STAR: Y. Hu HP 2023 ALICE: Y. Hou HP 2023

Energy Loss to p(d)-Au Medium at RHIC

$I_{\text {pAu }}$ for recoil jet
Normalization per high pt trigger object

Suppression on near and away-side similar; inconsistent with Eloss

Energy Loss to p(d)-Au Medium at RHIC

$R_{d A u}$ for Π^{0}
$N_{\text {bin }}$ determined by forcing $\left.R_{d A u}\right\rangle$ to unity (colorless object no interaction with medium) Qualitatively consistent with predictions of Eloss in small systems
$I_{\text {pAu }}$ for recoil jet

Normalization per high p_{T} trigger object

Suppression on near and away-side similar;

 inconsistent with ElossA. Huss et al. PRC103, 054903 (2021). W. Ke, I. Vitev arXiv:2204.00634

Energy Loss to p(d)-Au Medium at RHIC

$R_{d A u}$ for Π^{0}
$N_{\text {bin }}$ determined by forcing $\left.R_{d A u}\right\rangle$ to unity (colorless object no interaction with medium) Qualitatively consistent with predictions of Eloss in small systems
lpau for recoil jet

What will
we see at
EIC?

Normalization per high p_{t} trigger object

Suppression on near and away-side similar; inconsistent with Eloss

[^0]
Jet Azimuthal Broadening at the EIC

Lepton-jet correlations in DIS in eA

Multiple interactions of hard scattered parton as it exits the target nucleus generates p_{T} broadening/deflection

- similar concept used to explain Cronin effect in pA collisions

> Sensitivity to Eloss in Cold nuclear matter

Energy-Energy Correlators

The ultimate di-hadron correlation

$$
\text { Normalized EEC }=\frac{1}{\sum_{\text {Jets }} \sum_{i \neq j} \frac{E_{i} E_{j}}{p_{T, J e t}{ }^{2}}} \frac{d\left(\sum_{\text {Jets }} \sum_{i \neq j} \frac{E_{i} E_{j}}{p_{T, J e t}}\right)}{d(\Delta R)}
$$

Energy-Energy Correlators in pp

First experimental measurements underway

Good theory-date agreements

$$
\mathrm{R}_{\mathrm{L}}{ }^{*} \mathrm{P}_{\mathrm{T}} \sim \text { constant * } \Lambda_{\mathrm{QcD}}
$$

Universal turning point across large range in jet p_{T}

Energy-Energy Correlators at the EIC

Medium-induced radiation effects expected at :
θ^{2} црт L ~ 1
$\theta \mathrm{L} \propto 1 /{ }^{1} \mathrm{p}_{\mathrm{T}} \mathrm{L} \propto 1 /\left(V_{\mathrm{p}} \mathrm{A} \mathrm{A}^{1 / 6}\right)$

Energy-Energy Correlators at the EIC

Medium-induced radiation effects expected at :
θ^{2} Lpt L ~ 1
$\theta L \propto 1 / \sqrt{ } p_{T} L \propto 1 /\left(\sqrt{p} T A^{1 / 6}\right)$

Can enhance contribution from soft radiation by changing power En

Energy-Energy Correlators at the EIC

Medium-induced radiation effects expected at :

Can enhance contribution from soft radiation by changing power E^{n}
EECs versatile tools with many other applications

Charge Correlation Ratio

Access nonperturbative hadronization process with this di-hadron correlation

- Count leading and subleading particle in jet with SS and OS

$$
\boldsymbol{r}_{c} \equiv \frac{N_{C C}-N_{C \bar{C}}}{N_{C C}+N_{C \bar{C}}}
$$

Random/No correlation: $\mathrm{r}_{\mathrm{c}}=0$

Can also look at species correlations

Models invariant with Q^{2} and P_{T} what does data show?

Charge Correlation Ratio

First preliminary results from H 1

$$
\boldsymbol{r}_{c} \equiv \frac{N_{C C}-N_{C \bar{C}}}{N_{C C}+N_{C \bar{C}}}
$$

Take one step further and look at rc for first and second split of jet using SoftDrop

Models reproduce trends of the data

Need EIC to look at PID correlations

Exploiting Multifold

Correction tool just beginning to be used
Machine learning driven

- Unbinned
- Simultaneously unfolds multiple observables \rightarrow Correlation information is retained

Use example collinear drop:
Probes soft component STAR initial measured $\Delta \mathrm{M}$ Theory prefer $\left.\mathrm{M}^{2}-\mathrm{M}^{2} \mathrm{~g}\right) / \mathrm{p}^{2} \mathrm{~T}$
 Because using multifold could calculate without redoing analysis

Andreassen et al. PRL 124, 182001 (2020) Chien and Stewart JHEP 2020, 64 (2020). STAR: Y. Song DIS 2023

Summary

Many studies build on those occurring at RHIC, LHC and HERA
Exploit tools being developed now and over next few years

Wealth of di-jet and di-hadron correlations studies to be done at EIC only scratched the surface in this talk

Success of the studies rely on meeting or exceeding detector requirements

- As ePIC design becomes set in stone will probably need D2 to do this

Kinematics and properties of (di)jets at EIC

FIG. 11. [color online] The average number of particles in a jet as a function of the transverse momentum of the jet for all stable particles and only charged particles for minimum particle p_{T} s of 250 and $500 \mathrm{MeV} / \mathrm{c}$. Also shown are the RMS variations for all particles with $p_{\mathrm{T}}>250 \mathrm{MeV} / \mathrm{c}$ and charged particles with $p_{\mathrm{T}}>500 \mathrm{MeV} / \mathrm{c}$.

B. Page et al. PRD 101, 072003 (2020)

No broadening in pA at STAR

 Results: no broadening of acoplanarity with $\mathbf{E A}_{\text {BBC }}$

The Breit Frame

The Breit or "brick wall" frame is particularly useful for jet analyses
It is oriented such that for the DIS process $\gamma * q \rightarrow q^{\prime}$, the virtual
photon and interacting quark collide head-on along the z-axis It is then boosted such that t the virtual photon four-momentum ($0,0,0,-Q$)
This boost means
Incoming quark $p_{z}=Q / 2$
Scattered quark $p_{z}=-Q / 2$
Proton remnant $p_{z}=(1-x) Q /(2 x)$.
Gives a natural separation between jets from struck quark and those associated with proton remnant.
Working in the Breit frame has the effect of suppressing contributions from the L.O. subprocess, as the scattered quark has zero transverse momentum by construction

Angular correlations in excl．dfjet and Yp events

S．Behera：Wed 3.20 pm
$\mathrm{PbPb} 0.38 \mathrm{nb}^{-1}(5.02 \mathrm{TeV})$

－＜cos（2Ф）＞for exclusive dijets not well described by MC tuned in ep
－sensitive to primordial asymmetry due to the linearly polarized gluons
－Bridging large with exceedingly small systems
－PYTHIA8 describes v_{2} in γp too \rightarrow jet－like correlations still dominate

[^0]: A. Huss et al. PRC103, 054903 (2021). W. Ke, I. Vitev arXiv:2204.00634

