

Competition: H1 and Zeus at HERA

K. Wichmann

Complementarity: H1 and Zeus at HERA

K. Wichmann

Complementarity – the obvious: cross checks

3

The F_2 structure function increases rapidly as x decreases. it is exciting to see F_2 rise at small x.

July 1994

Unconfirmed: HERA Pentaguark frenzy 2004/5

Entries per 10 MeV

K. Wichmann, Workshop on 2nd detector for EIC, 17.05.2023

Unconfirmed: HERA Pentaguark frenzy 2004/5

Combinations / 0.005 GeV

ZEUS

Complementarity - the detectors

H1 and ZEUS detectors complementary \rightarrow by chance ...

EIC has a chance to do it on purpose :)

DESY

 $\mathbf{\overline{\mathbf{x}}}$

Wichmann,

Workshop on

Nud

dete

Detectors strengths

- Both detectors \rightarrow almost fully hermetic multipurpose HEP detectors
- Design differences turned out to give complementarity by chance

- H1 better at electron reconstruction due to EM calorimeter and detector design
- At HERAII → only forward detectors for diffraction

 ZEUS better at hadron calorimetry → compensating uranium calorimeter → the only so far and one of the best calorimeters ever built

Real Z° @ ZEUS

ZEUS calorimeter allowed measurement of smallest HERA cross section in hadronic decays of real Z⁰

 ZEUS calorimeter resolution factor of two better than ATLAS or CMS in similar events

Complementarity - the matured: cross-calibration and combination

Combination of inclusive DIS data samples

- 41 final data sets with HERA inclusive measurements
- NCep and CCep
 - 21 HERA I data samples
 - 20 HERA II data samples, including:
 - 8 inclusive HERA II E_p = 920 GeV
 - 4 high y data E_p = 920 GeV
 - 4 high y data $E_p = 575$ GeV
 - 4 high y data E_p = 460 GeV
- Data 1994-2007: over 10 years of data taking!
- 22 papers between 1997-2014: almost 20 years of data analysis!

Total of 2927 data points combined to 1307

Wichmann,

Workshop on

2nd

Full publication list

F. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 63, 625 (2009), [arXiv:0904.0929].

F. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 64, 562 (2009), [arXiv:0904.3513].

C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C 13, 609 (2000), [hep-ex/9908059].

C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C 19, 269 (2001), [hep-ex/0012052].

C. Adloff et al. [H1 Collaboration], Eur. Phys. J. C 30, 1 (2003), [hep-ex/0304003].

F. Aaron et al. [H1 Collaboration], JHEP 1209, 061 (2012), [arXiv:1206.7007].

V. Andreev et al. [H1 Collaboration], Eur. Phys. J. C 73, 2814 (2013), [arXiv:1312.4821].

F. Aaron et al. [H1 Collaboration], Eur. Phys. J. C 71, 1579 (2011), [arXiv:1012.4355].

J. Breitweg et al. [ZEUS Collaboration], Phys. Lett. B 407, 432 (1997), [hep-ex/9707025].

J. Breitweg et al. [ZEUS Collaboration], Phys. Lett. B 487, 53 (2000), [hep-ex/0005018].

J. Breitweg et al. [ZEUS Collaboration], Eur. Phys. J. C 7, 609 (1999), [hep-ex/9809005].

S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 21, 443 (2001), [hep-ex/0105090].

J. Breitweg *et al.* [ZEUS Collaboration], Eur. Phys. J. C **12**, 411 (2000), [Erratum-ibid. C **27**, 305 (2003), [hep-ex/9907010].

S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 28, 175 (2003), [hep-ex/0208040].

S. Chekanov *et al.* [ZEUS Collaboration], Phys. Lett. B **539**, 197 (2002), [Erratum-ibid. B **552**, 308 (2003)], [hep-ex/0205091].

S. Chekanov et al. [ZEUS Collaboration], Phys. Rev. D 70, 052001 (2004), [hep-ex/0401003].

S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 32, 1 (2003), [hep-ex/0307043].

S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 62, 625 (2009), [arXiv:0901.2385].

S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C 61, 223 (2009), [arXiv:0812.4620].

H. Abramowicz et al. [ZEUS Collaboration], Phys. Rev. D 87, 052014 (2013), [arXiv:1208.6138].

H. Abramowicz et al. [ZEUS Collaboration], Eur. Phys. J. C 70, 945 (2010), [arXiv:1008.3493].

H. Abramowicz *et al.* [ZEUS Collaboration], Phys. Rev. D **90**, 072002 (2014), [arXiv:1404.6376].

DESY-15-039 ArXive: 1506.06042 EPJC 75 (2015) 580

Q^2-X_{Bi} common grids

<u>Two separate grids</u>

 \bigcirc inclusive grid, for E_p = 920 GeV and E_p = 820 GeV data sets

- 0.045 < Q² < 50000 GeV²
- 6×10⁻⁰⁷ < ×_{Bi} < 0.65

Averaging procedure

• Combination done using HERAverager: wiki-zeuthen.desy.de/HERAverager

$$\chi^{2}_{\exp,ds}(\boldsymbol{m},\boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma^{i,ds}_{j} m^{i} b_{j} - \mu^{i,ds}\right]^{2}}{\delta^{2}_{i,ds,\text{stat}} \mu^{i,ds} \left(m^{i} - \sum_{j} \gamma^{i,ds}_{j} m^{i} b_{j}\right) + \left(\delta_{i,ds,\text{uncor}} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}$$

- 162 correlated systematic sources taken into account
 → treated in combination as nuisance parameters: scaled by fit
- Output
 - 7 data samples for e[±]p, NC and CC, 3 CMEs
 - Statistical and uncorrelated systematic uncertainties
 - 162 correlated statistical uncertainties

Good data consistency: $\chi^2/dof = 1687/1620$

Combined data accuracy reaches ~1%

Electroweak unification

Text book plots of fundamental properties of particle interactions

Beauty and charm in PDF fits

- Beauty and charm masses \rightarrow model parameters in PDF fits \rightarrow their uncertainties improved by combination
 - \rightarrow does it matter?

Pre-combination: HERAPDF2 NNLO

Variation	Standard Value	Lower Limit	Upper Limit	
$Q_{\rm min}^2$ [GeV ²]	3.5	2.5	5.0	
$Q^2_{\rm min}$ [GeV ²] HiQ2	10.0	7.5	12.5	
$M_c(\text{NLO})$ [GeV]	1.47	1.41	1.53	
M_c (NNLO) [GeV]	1.43	1.37	1.49	
M_b [GeV]	4.5	4.25	4.75	
f_s	0.4	0.3	0.5	

Post-combination: HERAPDF2Jets NNLO

Parameter		Central value	Downwards variation	Upwards variation		
$Q^2_{\rm min}$	$[GeV^2]$	3.5	2.5	5.0		
f_s		0.4	0.3	0.5		
M_c	[GeV]	1.41	1.37*	1.45		
M_b	[GeV]	4.20	4.10	4.30		
μ_{f0}^2	$[GeV^2]$	1.9	1.6	2.2*		

H1 and ZEUS

Comparing HERAPDF2 NNLO and HERAPDF2Jets NNLO

- PDFs shapes very similar for pre- and post-combination HF masses
- Gluon experimental uncertainties hardly changed

Model uncertainties improved thanks to procedure update and smaller parameters uncertainties → combination! It's not much but every inch matters Message to take away

<u>Complementarity of detectors</u>

- In my opinion a second detector is a must
 - \rightarrow H1 and ZEUS did it by chance
 - \rightarrow EIC has a chance to do it on purpose!

Additional slides

HERA accelerator

Two colliding experiments

Deep Inelastic Scattering @ HERA

$$Q^{2} = -q^{2} = -(k-k')^{2}$$

$$x = \frac{Q^2}{2\mathbf{p} \cdot q} \qquad y = \frac{p \cdot q}{p \cdot k}$$

 $s = (p+k)^2$ $Q^2 = x_{\text{\tiny Bi}} y \cdot s$

Now we combine these measurements

Data Set		x _{Bj} (Grid	Q ² [GeV	²] Grid	L	e ⁺ /e ⁻	\sqrt{s}	$x_{\rm Bi},Q^2$ from
		from	to	from	to	pb ⁻¹		GeV	equations
HERA I $E_p = 820 \text{ GeV}$	and $E_p =$	920 GeV data	sets						
H1 syx-mb	95-00	0.000005	0.02	0.2	12	2.1	e^+p	301,319	13,17,18
H1 low Q^2	96-00	0.0002	0.1	12	150	22	e^+p	301,319	13,17,18
H1 NC	94-97	0.0032	0.65	150	30000	35.6	e ⁺ p	301	19
H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301	14
H1 NC	98-99	0.0032	0.65	150	30000	16.4	ep	319	19
H1 CC	98-99	0.013	0.40	300	15000	16.4	ep	319	14
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	ep	319	13
H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319	19
H1 CC	99-00	0.013	0.40	300	15000	65.2	e ⁺ p	319	14
ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e ⁺ p	300	13
ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300	13, 19
ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300	13
ZEUS NC	96-97	0.00006	0.65	2.7	30000	30.0	e ⁺ p	300	21
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	300	14
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e p	318	20
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	ep	318	14
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	318	20
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e ⁺ p	318	14
HERA II $E_p = 920 \text{ GeV}$	data sets								
H1 NC 1.5p	03-07	0.0008	0.65	60	30000	182	e^+p	319	13, 19
H1 CC 1.5p	03-07	0.008	0.40	300	15000	182	e ⁺ p	319	14
H1 NC 1.5p	03-07	0.0008	0.65	60	50000	151.7	ep	319	13, 19
H1 CC 1.5p	03-07	0.008	0.40	300	30000	151.7	ep	319	14
H1 NC med O2 *9.5	03-07	0.0000986	0.005	8.5	90	97.6	e ⁺ n	319	13
H1 NC low 02 *9.5	03-07	0.000029	0.00032	2.5	12	5.9	e ⁺ p	319	13
ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e ⁺ p	318	13,14,20
ZEUS CC 1.5p	06-07	0.0078	0.42	280	30000	132	e ⁺ p	318	14
ZEUS NC 1.5	05-06	0.005	0.65	200	30000	169.9	en	318	20
ZEUS CC 15	04-06	0.015	0.65	280	30000	175	en	318	14
ZEUS NC nominal *9	06-07	0.000092	0.008343	7	110	44.5	et p	318	13
ZEUS NC satellite *	06-07	0.000071	0.008343	5	110	44.5	e ⁺ n	318	13
HERA II $E_n = 575 \text{ GeV}$	data sets	0.000071	0.000010			11.0	εp	210	
H1 NC high Q^2	07	0.00065	0.65	35	800	5.4	e ⁺ n	252	13, 19
H1 NC low O^2	07	0.0000279	0.0148	1.5	90	5.9	e ⁺ n	252	13
ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e ⁺ n	251	13
ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	et p	251	13
HERA II $E_{\mu} = 460 \text{ GeV}$ data sets									
H1 NC high Q2	07	0.00081	0.65	35	800	11.8	e ⁺ n	225	13 10
H1 NC low Q^2	07	0.0000348	0.0148	1.5	90	12.2	e ⁺ n	225	13
ZEUS NC nominal	07	0.000184	0.016686	7	110	13.0	et n	225	13
ZEUS NC cotallita	07	0.000143	0.016686	5	110	13.9	e p	225	13
ZEUS NU satellite	07	0.000145	0.010080	5	110	15.9	ep	445	15

Swimming procedure

• Swimming done iteratively using our own data

Swimming factors are usually at level of few %

Improved precision

- Largest and most accurate data sample is for the NC e⁺p process
- The combined data accuracy reaches $\sim 1\%$
- Largest improvement for NC e⁻p 10 times more luminosity
- Consistent with HERA-I + improved uncertainties

Improving previous results

- increases statistical significance
- reduces systematic uncertainties via cross calibration techniques

Great gain in precision

New kinematic ranges explored

- Kinematic range extended for existing data samples
- Low energies added: CME = 225
 GeV and 251 GeV

Low Q² combined data

- Combined inclusive cross sections for low Q²
- Available for two CMEs
 - 300 GeV
 - 318 GeV
- Interesting for
 - dipole/saturation models
 - studying higher twists

$First \rightarrow Final$

As expected: low-x rise of F_2

$1993 \rightarrow 2015$

$xF_{3}^{\gamma Z}$ from combined data

- xF_3^{gZ} from subtracting the NC e^+p from the NC e^-p cross sections
- Weak Q^2 dependence \rightarrow translated to Q^2 = 1000 GeV² and averaged

 $0.016 < x_{Bj} < 0.725$ HERAPDF2.0 :1.165^{+0.042}_{-0.053} $0 < x_{Bj} < 1$ { HERAPDF2.0 :1.588^{+0.078}_{-0.100} QPM: 5/3

Data :1.314 \pm 0.057(stat) \pm 0.057(syst) Data :1.790 \pm 0.078(stat) \pm 0.078(syst)

CC: helicity effects

https://www.herafitter.org

Averaging results

• Good data consistency: $\chi^2/dof = 1687/1620$

Procedural uncertainties

• Combination done using HERAverager: wiki-zeuthen.desy.de/HERAverager

$$\chi^2_{\exp,ds}(\boldsymbol{m},\boldsymbol{b}) = \sum_i \frac{\left[m^i - \sum_j \gamma^{i,ds}_j m^i b_j - \mu^{i,ds}\right]^2}{\delta^2_{i,ds,\text{stat}} \mu^{i,ds} \left(m^i - \sum_j \gamma^{i,ds}_j m^i b_j\right) + \left(\delta_{i,ds,\text{uncor}} m^i\right)^2} + \sum_j b_j^2$$

- 162 correlated systematic sources taken into account
 - treated as multiplicative

