Electromagnetic Calorimeters at the EIC

- lessons from the 1st detector -

1ST INTERNATIONAL WORKSHOP ON A 2ND DETECTOR FOR THE ELECTRON-ION COLLIDER

Temple University, Philadelphia, PA May 17-19, 2023

Nicolas Schmidt (ORNL)

Yellow Report: DIS Physics with ECals

Inclusive DIS:

- scattered electron mostly backwards and in barrel
- electron energy ranges up to beam energy in backward and even higher in barrel
- electrons in barrel correspond to high Q² events
- electron **PID** needed due to γ and π^{\pm} BG at low energies

Semi-inclusive DIS:

- $\pi^0
 ightarrow \gamma \gamma$ reconstruction needed
- momenta up to 10 GeV/c in barrel (higher in forward)
- granularity requirement to prevent merging of photon showers

Exclusive DIS:

- measurement of DVCS photons, $J/\Psi \rightarrow ee,$ and more
- signal over wide rapidity range
- hermetic coverage necessary

N. Schmidt (ORNL)

May 18, 2023

1/12

Yellow Report: Requirements for ECals

- YR outlines energy and position resolution requirements to fulfill physics program
 - \rightarrow strong resolution requirement for e-going side
 - \rightarrow lowest requirement in barrel with (12–14)%/ $\sqrt{E} \oplus$ (2–3)%
- Strong PID requirements:
 - \rightarrow π suppression up to factor 1e4 in e-going and at least 3 σ e/ π elsewhere
- Hermetic coverage required from $-3.5 < \eta < 3.5$

- ightarrow low inner material budget needed
- \rightarrow routing of services to be considered

N. Schmidt (ORNL)

e-going direction - considerations

$\begin{array}{c} \text{rgg-g} \\ \text{rgg-g} \\ \text{rgg-d} \\ rg$	¹ 10 ⁴ 10 ⁴	High track matching efficiency needed
acceptance beyond $\eta < -3.5$ difficult	e ⁻ energy reco. largely based on tracking	Energy losses from detector material
		10 ⁻¹ EPIC material No material 10 ⁻² Eff. loss 10 ⁻³ Eff. loss 10 ⁻⁴ 0.5 E _{utur} /E _{nom}

N. Schmidt (ORNL)

Detector 2 Workshop

May 18, 2023

EIC

e-going direction - ePIC

PbWO₄ crystal calorimeter

- $\rightarrow 2 \times 2 \times 20$ cm³ dimension. 2932 crystals in total
- \rightarrow light yield strongly temperature dependent
- \rightarrow readout on both crystal ends for higher light yield
- Calorimeter at z = -166 cm and covers 8.5 < R < 64.1 cm \rightarrow acceptance of $-3.6 < \eta < -1.6$
- Performance based on simulations exceeds YR requirements

$$ightarrow$$
 energy reso of $\sigma/{\it E}=1.8\%/\sqrt{\it E}\oplus 0.8\%$

- \rightarrow pion rejection up to 10⁴
- Approximate cost of \$10 M \rightarrow dominated by cost of crystals

N. Schmidt (ORNL)

e-going direction - alternatives

• Sci-Glass or hybrid PbWO₄ and Sci-Glass calorimeter

- \rightarrow cost-effective alternative with comparable performance
- \rightarrow risk associated with Sci-Glass as further R&D is needed
- \rightarrow challenging cluster finding at crossover region in hybrid case
- Magnitude of Sci-Glass utilization depending on calorimeter size
- Homogeneous calorimeter most likely only feasible option in this region

N. Schmidt (ORNL)

barrel region - considerations

N. Schmidt (ORNL)

Detector 2 Workshop

barrel region - ePIC (after internal review)

- Hybrid concept
 - \rightarrow Imaging calorimetry based on AstroPix monolithic silicon sensors (500 μ m \times 500 μ m)
 - \rightarrow Scintillating fibers embedded in Pb (Pb/ScFi) similar to GlueX ECal
- Imaging of showers via six layers of silicon interleaved with five Pb/ScFi layers
 - \rightarrow also provides space point for DIRC cherenkov reconstruction
 - ightarrow spatial resolution σ = (2.32 \pm 0.06)mm/ \sqrt{E} \oplus (1.4 \pm 0.02)mm or σ = 0.5mm
- Total radiation length of 20 X₀
- ${\small { o } }$ Acceptance of $-1.8 < \eta < 1.5$ and full azimuth
- Energy resolution GlueX $\sigma/E = 5.2\%/\sqrt{E} \oplus 3.6\%$ (ePIC sim. slightly better)
- Good pion rejection with hybrid information

FIC

Imaging layer – Position info

N. Schmidt (ORNL)

Detector 2 Workshop

barrel region - alternatives

PANDA-style crystal calorimeter

- \rightarrow slight acceptance gaps due to module effects
- \rightarrow offset projective geometry to avoid channeling
 - PbWO₄ crystals
 - \rightarrow expensive but excellent performance
 - Sci-Glass crystals
 - \rightarrow R&D for long crystals necessary
 - ightarrow cost-effective with comparable performance to Imaging Calorimeter
 - Cesium Iodide crystals
 - \rightarrow used in BaBar calorimeter [link]
 - \rightarrow high performance: $\sigma/E \approx 2.3\%/\sqrt{E} \oplus 1.35\%$
- Shashlik ECal like ALICE EMCal or PHENIX EMC
 - \rightarrow most cost effective alternative with option of re-use from other experiments
 - \rightarrow good performance mainly for larger radii
- W/ScFi ECal like sPHENIX EMC [link]
 - \rightarrow high granularity and low moliere radius
 - \rightarrow barely sufficient performance: $\sigma/{\it E} \approx 13.3\%/\sqrt{\it E} \oplus 3.5\%$
- Dual Readout IDEA
 - \rightarrow requires significant space
 - \rightarrow could be combined with endcap (see later)

p-going direction - considerations

Shower separation at high η

Integration and services

N. Schmidt (ORNL)

Detector 2 Workshop

W/SciFi calorimeter

- \rightarrow matrix of tungsten powder, expoxy and embedded ScFi
- \rightarrow 0.47mm diam. fibers, 1mm spacing, SF \approx 2%
- $\rightarrow 2.5 \times 2.5 \times 17 \text{cm}^3$ tower dimensions
- Design based on STAR forward prototype [link] and sPHENIX EMCal [link] ۲ \rightarrow fiber readout via light guide to 3 \times 3mm² SiPMs
- Acceptance of $1.3 < \eta < 3.5$ (20 < R < 170cm) ۲
- Fulfills YR performance requirements: \rightarrow ePIC simulation $\sigma/E = 7.1\%/\sqrt{E} \oplus 0.1\%$ \rightarrow sphenix tb $\sigma/E = 11.4\%/\sqrt{E} \oplus 1.5\%$

N. Schmidt (ORNL)

May 18, 2023

p-going direction - alternatives

- Re-use PHENIX Pb-scintillator shashlik ECal
 - \rightarrow cost-effective option with good performance ($\sigma/E = 8.1\%/\sqrt{E} \oplus 2.1\%$)
 - \rightarrow requires refinement of segmentation with SiPMs (5.535 \times 5.535cm²)
- Dual readout calorimeter
 - ightarrow projective approach similar to IDEA ($\sigma/E=11\%/\sqrt{E}\oplus 0.8\%$)
 - \rightarrow various absorber and fiber arrangements possible
 - \rightarrow option as possible high η inlay
 - \rightarrow barrel coverage possible depending on magnet bore
 - ightarrow machine learning approach necessary for high granularity clusterization
- FoCal-E or CMS HGCAL technology [link]
 - \rightarrow silicon layers to resolve shower development
 - \rightarrow excellent PID performance
 - \rightarrow ML necessary for clusterization

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 1 / √E (GeV)

N. Schmidt (ORNL)

Detector 2 Workshop

- Overview of general ECal considerations for each detector region
- Technology choices, acceptance and performance of ePIC detector presented
- Large pool of alternative approaches possible
 - \rightarrow re-use of traditional technologies
 - \rightarrow more novel approaches like dual readout calorimetry
- EMCal system choice depends on many external factors \rightarrow physics, material budgets, tracking detectors, magnet bore, ...

Electromagnetic calorimetry in 2nd detector a problem with many solutions!