Brian Page

1st International Workshop on a 2nd Detector for the EIC

May 18th, 2023

HCal Function at the EIC

- Particles and jets will have relatively low momenta except in the forward region – track momentum resolution superior to calorimeter resolution for much of the phase space
- □ Track momentum + PID = Energy determination
- Hadron calorimeters needed for measurements of neutral hadrons (neutrons and K_L)

Dessible muon ID? KLM?

- □ As particle energy increases, calorimeter resolution improves while tracker resolution degrades
- Tracker resolution and acceptance degrades at forward rapidity
- Particle / jet energies will be highest in the forward (hadron-going) direction
- □ Good forward hadron calorimetry will be essential

Neutral Hadrons (18x275)

magenta

- Neutral hadron energy vs eta distributions all show roughly similar features – high energy forward, low at mid-rapidity, and a slight rise in the backward region
- □ Charged hadron and gamma distributions are very similar

Reconstructed Jets (18x275)

Reconstruct jets from all stable particles using Anti-kT

Backward Endcap flux return instrumented as well

- □ Forward Calorimetry System
 - ➢ W/Scint & Fe/Scint sampling calorimeter
 - > Tungsten layers on front face as collimator
 - Multiple towers per module to increase granularity and reduce dead area
 - Longitudinal segmentation -> particle flow

- □ Forward Calorimetry System
 - ➢ W/Scint & Fe/Scint sampling calorimeter
 - > Tungsten layers on front face as collimator
 - Multiple towers per module to increase granularity and reduce dead area
 - Longitudinal segmentation -> particle flow

Barrel HCal System

- Fe/Scint sampling calorimeter
- Partial reuse of sPHENIX calorimeter
- Also serves as magnet flux return

- Forward Calorimetry System
 - ➢ W/Scint & Fe/Scint sampling calorimeter
 - Tungsten layers on front face as collimator
 - Multiple towers per module to increase granularity and reduce dead area
 - Longitudinal segmentation -> particle flow

Barrel HCal System

- Fe/Scint sampling calorimeter
- Partial reuse of sPHENIX calorimeter
- Also serves as magnet flux return

- Forward Calorimetry System
 - W/Scint & Fe/Scint sampling calorimeter
 - Tungsten layers on front face as collimator
 - Multiple towers per module to increase granularity and reduce dead area
 - Longitudinal segmentation -> particle flow

Barrel HCal System

- Fe/Scint sampling calorimeter
- Partial reuse of sPHENIX calorimeter
- Also serves as magnet flux return

Backward HCal System

- Currently envisioned as a tail catcher for identifying neutral hadrons
- Scint tile design under active investigation

Barrel Calorimeter: Incident Energy

- Particles / Jets in the barrel region (~ -1 < eta < 1) are quite soft (E < 10 GeV) and</p>
- □ Have to go through ECal and magnet before reaching the HCal
- □ How much of the shower reaches the HCal to be measured?

Studies carried out by Derek Anderson

Barrel Calorimeter: Incident Energy

- Particles / Jets in the barrel region (~ -1 < eta < 1) are quite soft (E < 10 GeV) and</p>
- □ Have to go through ECal and magnet before reaching the HCal

□ How much of the shower reaches the HCal to be measured?

Use ECal and HCal cluster / hit information in a multivariate regression analysis to calibrate response

□ Could this be improved with more calorimetry in front of the magnet? See better resolution for imaging ECal which has greater interaction depth.

Crossing Angle and Forward Acceptance

- The presence of a crossing angle complicates the acceptance in the forward region
 - Difference between "detector symmetry" axis (centered on electron beam), "physics" axis (proton beam) and center of beam pipe
 - Beam pipe changes dimension as a function of z through the length of the forward calorimeter
 - How do we get calorimeter as close as possible to the beam pipe to maximize acceptance?

 Can boost to a frame where beams are colinear (or just define coordinates w.r.t. hadron beam) – setting acceptance cuts in lab frame can lead to phi-dependent acceptance

Crossing Angle and Forward Acceptance

- The presence of a crossing angle complicates the acceptance in the forward region
 - Difference between "detector symmetry" axis (centered on electron beam), "physics" axis (proton beam) and center of beam pipe
 - Beam pipe changes dimension as a function of z through the length of the forward calorimeter
 - How do we get calorimeter as close as possible to the beam pipe to maximize acceptance?

-2

٥

Head-on Eta

Xing Angle = 35 mRad

Head-on Phi

Forward Acceptance: Calorimeter Insert

arXiv:2208.05472

- Calorimeter should sit as close as possible to the beam to maximize acceptance
 - Reduce phi-dependent acceptance effects as discussed above
 - \blacktriangleright Improve reconstruction of the total energy in event -> kinematic reconstruction
- □ Proposal in ePIC for a high-granularity insert whose geometry changes in z to follow the beam pipe

Larger crossing angle at the second IR will exacerbate forward HCal acceptance challenges -> Consider beam pipe design, higheta calorimeter design, and even calorimeter z position to Becond Detect maximize acceptance

Conclusions

- Structure of DIS events at the EIC dictates that different detector regions will see particles/jets with significantly different energies
- Need to take this into account when deciding the function, and therefore the form, of calorimeter systems at a second detector
- □ Helps outline potential areas of complementarity
 - Some amount of 'inner calorimetry'?
 - Energy measurements vs neutral hadron ID / veto?
 - KLM / Muon tagging capability?
- □ Larger crossing angle will pose challenges for forward acceptance think holistically about beam pipe design, calorimeter design and position to maximize coverage

Backup

Electron and Struck Quark (5x41)

Neutral Hadrons (5x41)

Reconstructed Jets (18x275)

Final State Particle Distributions

- Detector solenoid must align with electron beam to minimize synchrotron radiation: "lab frame" -> electron beam = z-axis
- When measuring in lab frame coordinates – see a hot spot in eta/phi corresponding to the beam direction
- More pronounced for more relativistic beams

□ How do we mitigate these features?

Coordinates W.R.T. Hadron Beam

- "Physics" in the forward region should be consistent around the hadron beam regardless of where the beam is pointing
- In some sense, the features seen above are simply artifacts of measuring about the "wrong" axis -> instead, define eta and phi with respect to the hadron beam direction (Eta*, Phi*)

Final State Particle Phi Vs Eta WRT Hadron Beam

- □ When defined w.r.t. the hadron beam, the concentrations in eta and phi disappear
- However, because there is no common beam axis, the particle distribution along the electron-going direction becomes distorted

Can avoid these distortions by boosting to a frame in Can avoid the frame in

Head-On (Minimum Boost) Frame

- Can boost and rotate into a frame in which the beams are collinear (no crossing angle) and energies are very close to the original (minimum boost)
- This should give an undistorted distribution of particles at high and low eta simultaneously

- Initial Configuration in the Lab Frame includes a relative angle between the beams
- 2. Boost by sum of beam 4-momenta to get to CM Frame
- 3. Rotate about y-axis to eliminate x-component of momentum
- 4. Boost back along z to (nearly) restore original beam energies

-2

Resulting distribution matches that from default simulation with no crossing angle introduced
Second Detector Workshop - Page

Figure by Barak Schmookler

Detector Acceptance Considerations

□ The head-on frame distributions shown previously assumed infinite acceptance – what effect will finite detector acceptance have?

Displacement between beams means that acceptance cuts in the lab frame (w.r.t. the electron beam) will introduce phi-dependent acceptance features in head-on frame

□ Try defining acceptance cuts w.r.t. the hadron beam instead

arXiv:2208.05472

Defining Acceptance Cuts

- □ The beam line shape in the endcap region is complicated, but mostly follows the hadron beam direction
- □ The z-axis in the head-on frame corresponds to the direction of the lab frame proton beam -> defining detector acceptance w.r.t. the hadron beam should eliminate the phi-dependent artifact
- Both plots on the right show the phi vs eta distribution where these quantities are defined in the head-on frame
 - Top plot applies a cut for |eta| < 4 where eta is defined relative to the electron beam
 - Bottom plot applies a cut for |eta| < 4 where eta is defined relative to the hadron beam

Calorimeter Insert and Kinematic Reconstruction

