µRWELL-PICOSEC: Development of Fast Timing Detector based µRWELL Technology

Kondo Gnanvo

JLab Radiation Detectors & Imaging Group (RD&I Group)

International Workshop on the 2nd Detector For EIC - Temple Univ. - 05/18/2023

Wenze Xi, Jack McKisson, Brian Kross

JLab - RD&I Group

Klaus Dehmelt, Wenglian Lee

Stony Brook University

Outline

- Introduction and concept of picosecond timing with Micro Pattern Gaseous Detectors (MPGDs)
- \clubsuit Development of µRWELL-PICOSEC detector within the JLab LDRD FY23 (LD2309).
- ✤ Preliminary results of first prototype.
- ♦ Ongoung R&D and approaches to address challenges and limitations of µRWELL-PICOSEC.

µRWELL-PICOSEC: Development of fast timing **µRWELL** detector

Background & Rationale:

- Develop precise and fast timing cost effective gaseous detectors for application in particle physics and medical instrumentation.
- Properties such as stability, radiation hardness, large area, segmented readout are highly desirable for such timing detectors.
- Proof of concept of precise timing detectors based on MPGDs has been established by the MM-PICOSEC collaboration with Micromegas
- Development of picosecond detector based on μ RWELL technology has the potential to satisfy such requirements.

Application in Future Experiments at JLab and the EIC and beyond:

- EIC detector I upgrade and future detector II: Fast timing technology such as µRWELL-PICOSEC can be an attractive alternative options to AC-LGADs for TOF, LAPPDs for Cerenkov photosensors technologies currently under consideration.
- * Added value performance of μrPICOSEC: high-rate capability, stable in strong B-field, radiation hard, large-area, low-cost
- High-luminosity / high energy upgrades at JLab: we anticipate demand for cutting edge technologies for high performance and cost effective PID detectors such as TOF and Cerenkov to satisfy the physic requirements of future experiments.
- Potential application in medical instrumentation i.e TOF-PET devices

Radiation Detector & Imaging Group

International Workshop on EIC Detector II - Temple U. 05/18/2023

µRWELL-PICOSEC compared to alternative technologies

			This R&D target				Th	is R&D target
Time of Flight (TOF) detectors				Photosensors for Cerenkov detectors				
	MRPCs	AC-LGAD	μrPICOSEC		SiPMs	MCP-PMTs	LAPPDs	
Time resolution	20 – 70 ✓	20 🗸	25 🗸		SIPIVIS	MCP-PM1S		μrPICOSEC
(ps)				$\left \begin{array}{c} \text{Time resolution} \\ \text{(ps)} \end{array}\right < 10$	< 100	< 100	50 🗸	50 🗸
Rate (MHz / cm ²)	0.05 ×	N/A	> 1 🗸					
Position resolution (mm)	~ 10 ×	0.030 ✓ (claim)	< 1mm 🗸	Position resolution (mm)	>1×	1×	0.3 – 1 🗸	< 1 🗸
Performance in				Performance in high B-field	Yes	Limited	Limited	Yes 🗸
high B-field	Yes	Yes	Yes 🗸	Radiation	dark	N/A	N/A	Yes 🗸
module size	$20 \times 20 \text{ cm}^2 \checkmark$	N/A	$20 \times 20 \text{ cm}^2 \checkmark$	hardness	current 🗴		1N/ A	
				Cost (\$ M / m ²)	0.8 – 1 ×	> 1 ×	0.8 – 1 ×	0.2 – 0.4 🗸
Cost (\$ M / m ²)	0.2 − 0.4 ✓	High 🗴	0.2 − 0.4? ✓					

Jefferson Lab

MM-PICOSEC Collaboration at CERN

PICOSEC-MM: Development of fast timing (picosecond resolution) MPGD using Micromegas amplification

- Large ongoing collaboration based at CERN with several major institutions from France, Greece, Poland, China ... and US (JLab and SBU)
- ◆ Proof of principle picosecond timing with MPGD established with several PICOSEC-MM prototypes:
 - Single-channel and small gap (100 μ m) prototype \rightarrow 17 ps with MIPs
 - Large-area (10 cm \times 10 cm) and multi-channel (100 pads) prototype \rightarrow 25 ps with MIPs and 70 ps with single photon (laser)
- PICOSEC-MM collaboration and RD51 collaboration \rightarrow strong connection (i.e., beam test campaign and GDD lab at CERN) *
 - The RD & I group at JLab is member of both RD51 and PICOSEC-MM

Tileable

with spring-loaded pins

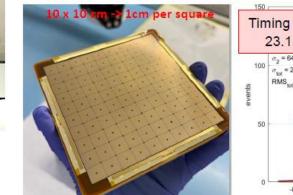
Strong synergy between PICOSEC-MM & µrPICOSEC → leverage on expertise & experience of PICOSEC-MM community

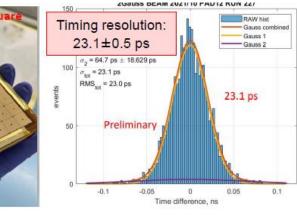
1-ch (φ1cm)

Resistive and

non-resistive

prototypes.

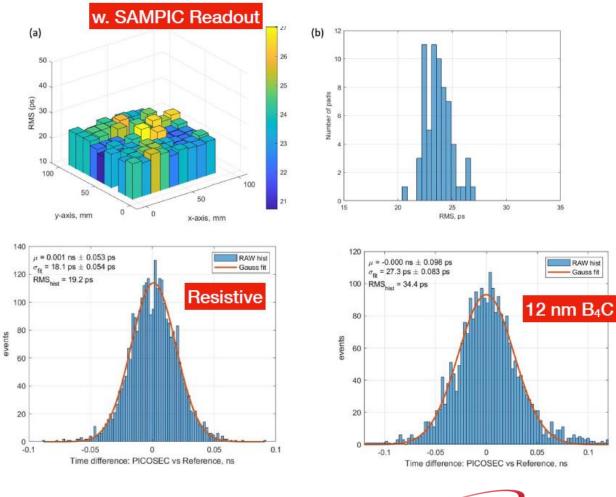

Proof of concept

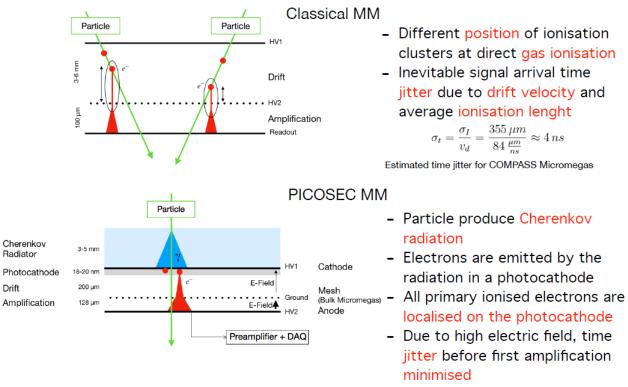

• 7-ch (1cm) 19-ch (φ3.6cm) Signal sharing Signal sharing. Resistive prototype

 100-ch (10 cm x10 cm) • 100 ch (10 cm x10 cm) Hybrid ceramic substrate MM MgF2 mechanically MM decoupled from housing decoupled

• 100 ch (10 cm x10 cm) Sealed Ti housing Increased fill factor

5


- Aune et al., Nuclear Inst. and Methods in Physics Research, A 993 (2021) 165076, https://doi.org/10.1016/j.nima.2021.165076
- Bortfeldt et al., Nuclear Inst. and Methods in Physics Research, A 903 (2018) 317–325, https://doi.org/10.1016/j.nima.2018.04.033


MM-PICOSEC Collaboration at CERN

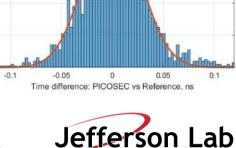
 $\sigma_t = \frac{\sigma_I}{v_d} = \frac{355\,\mu m}{84\,\frac{\mu m}{}} \approx 4\,ns$

Latest performance results of MM-PICOSEC

PICOSEC Micromegas

Lukas SOHL

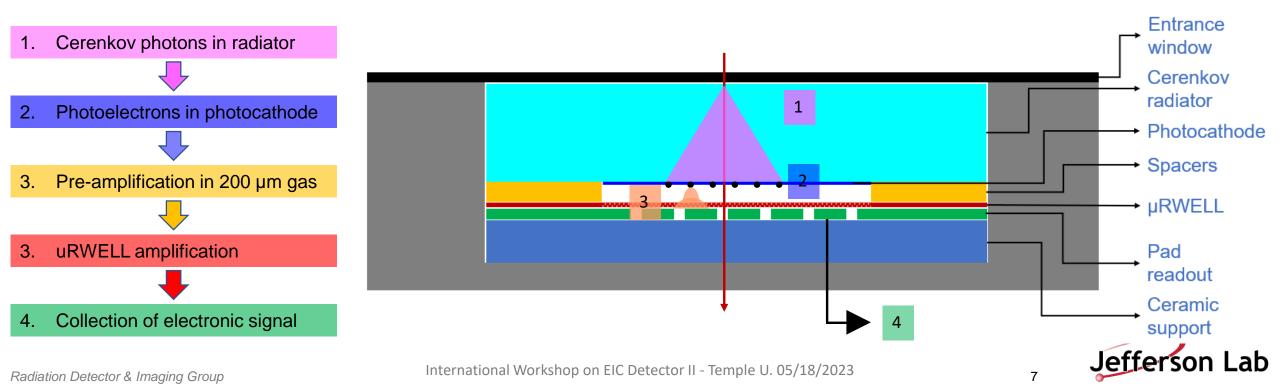
Drift


RD51 Miniweek 11.02.2020 - PICOSEC-Micromegas

International Workshop on EIC Detector II - Temple U. 05/18/2023

2

6


Radiation Detector & Imaging Group

µRWELL-PICOSEC detector concept

Concept of \muRWELL-PICOSEC: Develop fast timing gaseous detector using μ RWELL amplification \rightarrow timing resolution of tens of ps

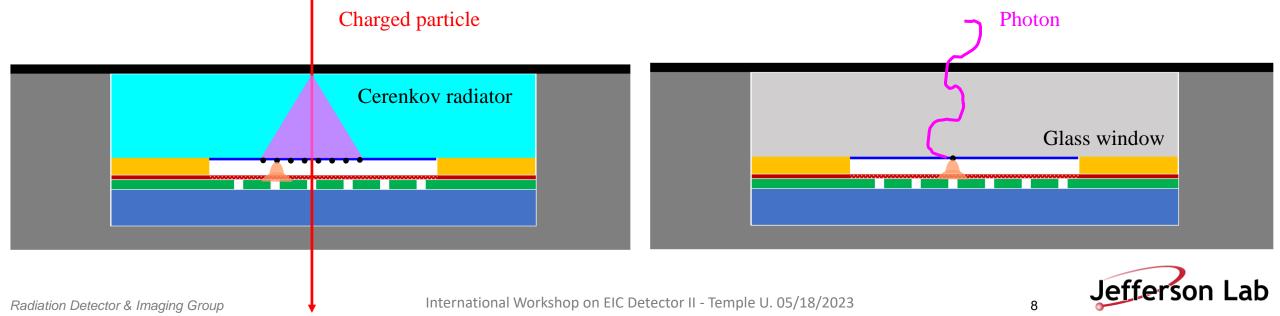
- 1. Cherenkov photons: relativistic charged particle creates Cerenkov photons → prompt photons i.e., timing resolution.
- 2. Photoelectrons: convert the Cerenkov photons into electrons, all electrons created at the same z position \rightarrow timing resolution
- 3. Pre-amplification: First amplification of electrons 100 to 200 µm gas in high drift field region (~20 kV/cm)
- 4. Amplification : Final electron amplification in μ RWELL gain structure \rightarrow high electric field (>40 kV/cm)
- 5. Electronic Signal: Arrival of the amplified electrons to the anode creates a signal.

Dual operation modes for $\mu RWELL$ -PICOSEC

Timing detector for relativistic charged particles:

- ✤ Cerenkov radiator crystal transparent in VUV region
- High quantum efficiency (QE) photocathode in VUV medium ~ 7
 photoelectrons for 3 mm MgF2
- ✤ Goal for timing resolution (~25 ps)

Applications:


- ✤ Time of Flight detector
- ✤ T0 detector

Single photon photodetector:

- High quantum efficiency (QE) photocathode in (VUV) medium which is most radiated by any radiator medium
- Window transparent to Cerenkov radiation
- ✤ High gain for single photon timing goal of ~50 ps

Applications:

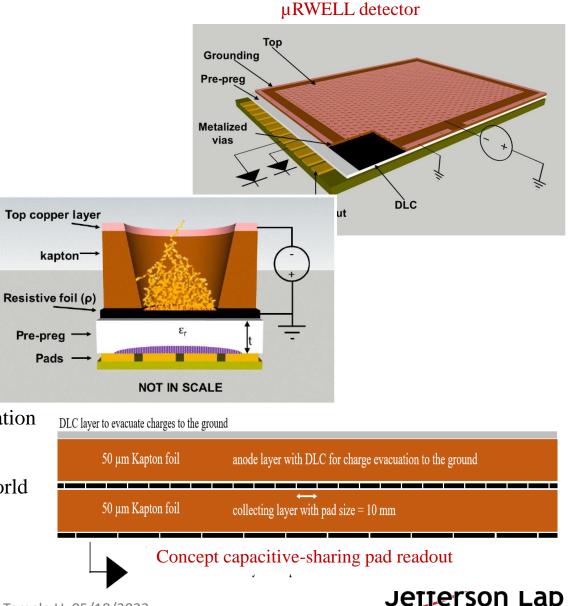
- Photosensor for RICH detectors
- ✤ T0 tagger at neutrino detector (liquid Ar scintillator light)

JLab LDRD FY23- LD2309: Development of µRWELL-PICOSEC detector

- 1. Develop µrPICOSEC prototypes and demonstrate the proof of concept with the timing performance.
 - ✤ Design µRWELL amplification / multi-channel readout to combine with Cerenkov radiator and photocathodes.
 - Optimize the mechanical structure for uniformity over large area (100 cm²) and thin gap (100 200 μ m) prototypes.
 - Full characterization of the prototype with laser source and in beam as well as test in high magnetic field.
 - Achieve the goal of a timing resolution better than 50 ps for charged particle with first prototype.
- 2. Investigate alternative radiator and photocathode materials.
 - Cesium Iodide (CsI) is unstable under humidity and susceptible to aging due to ion bombardment.
 - ↔ We will explore alternative and more robust photocathode materials with similarly high photoelectron yield.
 - * Investigate ideas of focusing optic devices integrated with radiator for precise position measurement in addition to timing.
- 3. Implement multi-channel fast electronics readout and DAQ system for µrPICOSEC detector.
 - ↔ Lab bench precision measurement of the timing performances of μ rPICOSEC prototypes.
 - Development of readout and DAQ system for 100-pads channels for μrPICOSEC prototypes.

9

Radiation Detector & Imaging Group


LD2309: Amplification & readout of µRWELL-PICOSEC

Design of **µRWELL** foil

- ✤ Single layer amplification MPGD
 - Simple amplification structure using same material as GEM foil
 - Resistive technology \rightarrow intrinsically robust against spark
 - Large area capability
- Specially well suited for PICOSEC technology
 - μ RWELL is a resistive MPGD \rightarrow improve detector stability
 - Amplification gap 50 μ m vs. to 128 μ m for MM \rightarrow improve timing
 - Segmented μ RWELL (PEP) \rightarrow improve rate capability & timing

Integration of capacitive-sharing readout structures

- Capacitive-sharing pad readout will allow precise position information capability with limited readout channel number
- Combining segmented μ RWELL and capacitive-sharing \rightarrow best of both world
 - Segmented µRWELL: excellent timing resolution
 - Capacitive-sharing readout: excellent position resolution

10

LD2309: Investigating radiators and photocathodes options

Photocathode:

- Current technology: Cesium Iodide (CsI)
- Pros:
 - High quantum efficiency (QE) in vacuum ultraviolet (VUV) region which is most radiated by any radiator medium
- Cons:
 - Sensitivity to water \rightarrow performance rapidly deteriorates
 - Ion bombardment (IBF) of CsI is challenging for high rate
- We will investigate alternative materials with similar level of QE:
- ✤ Candidates are B4C, DLC and Nano diamond (ND)
 - Goal is to achieve similar level of $QE \rightarrow Extensive R\&D$
 - Radiation hardness and unsensitivity to humid condition

Evaporator facility at Stony Brook University (SBU):

- ✤ Radiator and photocathode materials studies performed at SBU
- SBU to provide an Ion-Beam Assisted Physical Vapor Deposition (IBA-PVD) apparatus in an Ultra-High Vacuum (UHV) vessel to for the studies:
- Needs to complement with cryogenic vacuum pumping device to improve the status of UHV to perform the for the proposed investigation

This R&D effort isled by Stony Brook Univ. colleagues

Radiator:

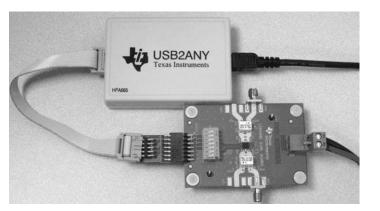
Current technology: Magnesium Fluoride (MgF2)

- Pros:
 - Transparency in vacuum ultraviolet (VUV) region which is most radiated by any radiator medium
- Cons:
 - Low photon yield
 - large Cerenkov angle $\sin(\Theta_c) \rightarrow \text{poor spatial information}$
 - Smaller Θ_c material will results in even lower photon yield

We will investigate alternative radiator materials:

- For higher photon yield capability
- ✤ Explore focusing optic elements integrated into radiator material
 - combine high photon yield in a small area
 - Improve timing resolution and position resolution capability

11


Radiation Detector & Imaging Group

LD2309: Development of Readout and DAQ for uRWELL-PICOSEC

Testing:

High performance oscilloscope: Rohde & Schwarz, model RTP164B

- Provide 2×16 Ghz bandwidth channels for
- Sub-picosecond timing resolution with statistical analysis
- ✤ Measurement for differential SNR for detector output
- ✤ 40 Gsamples/s
- ✤ 16 bits measurement precision

LMH6881: Programmable differential amplifier

CAEN FERS-5203: 64-channel Pico-TDC

Rohde & Schwarz, model RTP164B

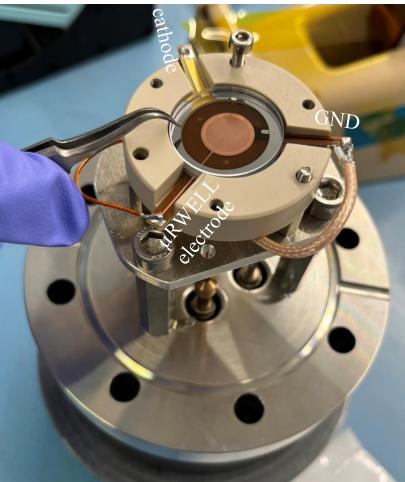
Data Acquisition System:

Provide 64 TDC channels with each

channel:

- ✤ ~7 ps RMS timing resolution
- LVDS input differential signals
- ✤ 3.5 Gbits/s Optical ethernet bus

12



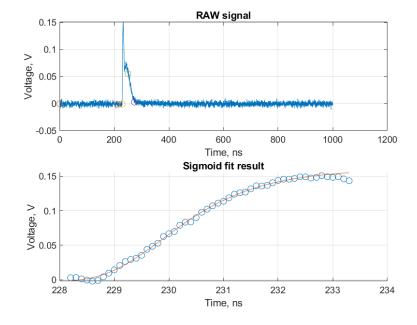
LD2309 First prototype: Small single-channel uRWELL-PICOSEC

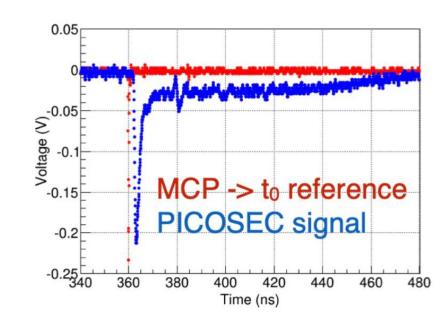
First µRWELL-PICOSEC prototype

- Single-pad small prototype
 - 3 cm diameter active area
 - 3 mm thick radiator + CsI photocathode
 - Sensor: 50 μm μRWELL + Kapton
 - μRWELL Holes: pitch / outer diameterinner diameter 140 μm / 70 μm / 50 μm
- Preliminary tests with laser source (GDD lab, December 2022)
 - Demonstrate that the µRWELL works in picosecond mode
 - Prototype very resilient against sparks
 - Poor timing performance compared to Micromegas (MM-PICOSEC)
- ✤ Lessons learned from preliminary tests
 - Several parameters to be tweaked to improve resolution

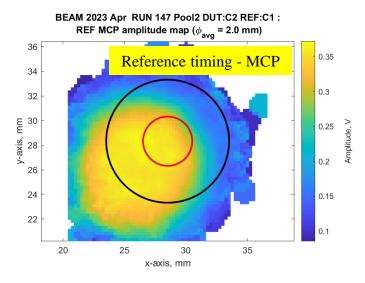
Single-pad **µRWELL-PICOSEC** prototype

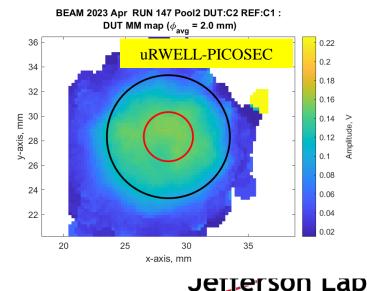
Prototype on test bench at CERN GDD Lab


LD2309 First prototype: Test beam and preliminary results

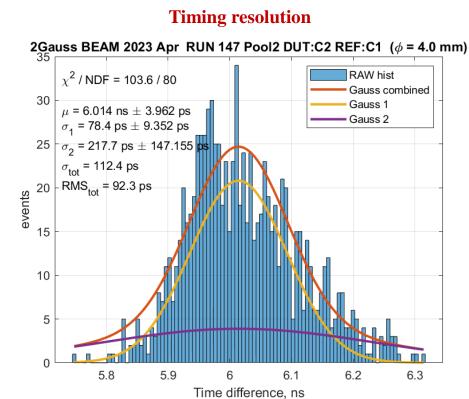

Prototype was tested again in beam at CERN (April 2023)

- ✤ More extensive tests in pion beam (RD51-PICOSEC coll. beam test (April 2023)
- ↔ HV scan to determine optimal anode HV vs. cathode HV combination
 - HV Anode (μ RWELL) \rightarrow 160 V 300 V
 - Cathode HV → 380 V 520 V


Typical uRWELL-PICOSEC signal


✤ Analysis of the data is ongoing

Signal amplitude XY map


14

Radiation Detector & Imaging Group

LD2309 First prototype: Preliminary timing performances

- HV scan (drift pre-amplification and µRWELL amplification)
- Best timing resolution with prototype: 84 ps for voltage setting Anode = 300 V and cathode 480 V
- ✤ Preliminary → Analysis is ongoing

Radiation Detector & Imaging Group

Run number	Anode	Cathode	Time resolution	Ampl	Rise Time	Efficiency
147	300	380	92.3	150	2.61	63.4
153	270	430	101	272	2.54	87.2
154	270	420	89	183	2.47	85.6
155	270	410	90	133	2.48	79.7
150	250	450	98	254	2.48	87.8
151	250	440	91.5	177	2.42	86.7
152	250	430	84.5	134	2.43	79.4
159	200	500	92.5	222	2.36	77.9
165	200	480	83.8	136	2.32	74
162	200	460	96.5	73	2.31	44.4
158	160	520	92.8	130	2.26	75.6
161	160	480	136	36	2.01	28.2
Workshop on FIC Detector II - Temple U. 05/18/2023					Jeffe	rson La

LD2309 First prototype: First takes on preliminary test results

- ♦ 80 ps time resolution for the first prototype is very encouraging, **but** ~4 × higher than MM-PICOSEC and R&D goal
- ✤ Differences in amplification structure between Micromegas and µRWELL could help explain the
 - 1. Amplification gap: Micromegas 128 um vs. µRWELL 50 um
 - 2. Mesh area in Micromegas 20% vs. 80% in $\mu RWELL$
 - \rightarrow Input capacitance from the amplification structure to the signal is significantly higher μ RWELL.
 - 3. Electric field lines in the pre-amplification drift region are different between Micromegas and $\mu RWELL$
 - → This also has a strong impact on the path of the electrons drift to the amplification devices, need to find the right

electronic field balance between pre-amplification and amplification for an optimize timing

4. Recent beam test results with resistive Micromegas suggest that the resistivity of the DLC layer has to be tuned for

optimal timing

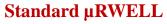
LD2309 First prototype: New prototypes in beam test (July 2023 @ CERN)

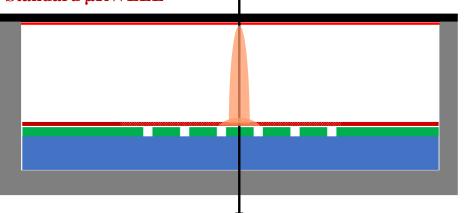
- ✤ 4 new µRWELL-PICOSEC PCBs under fabrication to study the parameters for better timing performance
 - 1. Increase the gap between the μ RWELL foil and the pick-up pad electrode from 50 μ m to 150 μ m

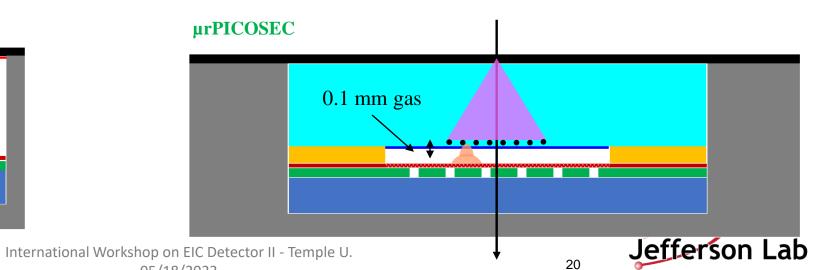
→ reduce the capacitance noise effect

- 2. Samples with different μ RWELL hole parameters to study impact of electric field and geometric transparency
 - Standard configuration: pitch = 140 um / outer diam. = 70 um / inner diam. = 50 um \rightarrow 20% transparency
 - 3 new configurations: 140 um / 85 um / 65 um; 120 um / 70 um / 50 um and 120 um / 85 um / 65 um
 - → 50% transparency and more straight field lines
- ✤ All 4 new PCB samples will be assembled into µRWELL-PICOSEC prototypes and tested in beam in July 2023
 - → Direct comparison of performance with the standard gap and standard holes configuration
- * Next steps:
 - Evaluate the effect of resistive layer (DLC) resistivity on timing resolution (Not be part of the current July 2023 test beam)
 - * Develop large area (10 cm \times 10 cm) 100-pad µRWELL-PICOSEC prototype and test performance in beam
 - Develop capacitive-sharing prototype to extract position information as well

Summary


- Exciting ongoing R&D effort to develop gaseous based picosecond level fast timing detector using MPGDs technologies
- MPGD-PICOSEC detectors provide alternative options to Si-based fast timing detectors for TOF in Particle Physics and potential application in medical instrumentations
- CERN based MM-PICOSEC collaboration demonstrate < 20 ps level timing capabilities for high energy charged particle with large-area Micromegas detectors in combination with Cerenkov radiator and photocathode.
- $\label{eq:main_eq} \bullet \mu RWELL \ could \ also \ be \ used \ as \ alternative \ amplification \ structure \ for \ PICOSEC \ technologies$
- ◆ Preliminary results on first µRWELL-PICOSEC prototype developed within the JLab LDRD program delivers ~ 80 ps timing performance → Several ideas to improved further these performance by a factor ×4 are under investigation
- µRWELL-PICOSEC could be a technology suitable for TOF applications as well as photo-sensor options for EIC Detector II
 but sustained R&D effort is require to bring the technology to experiment-ready level in time for Detector II operation
 Jefferson Lab


Back-up



µrPICOSEC vs. standard µRWELL detector

	Standard µRWELL detector	µrPICOSEC: picosecond uRWELL detector
Primary electrons production	Ionization of gas molecule by charged particles, typically, 3 mm gas \rightarrow limitation for timing performance	Charged particles creates Cerenkov photons in radiator \rightarrow photons conversion in photocathode \rightarrow produced photoelectrons
Amplification mechanism	Primary charges drift to μ RWELL amplification stage \rightarrow amplification with typical gain of 10 ⁴	Photoelectrons are pre-amplified in high e-field in 100 to 200 um gas then a second amplification by $\mu RWELL \rightarrow$ total gain can reach 10 ⁷
Signal collection structures	Strips, pads, large capacitance, high rate	Pads, small capacitance critical for high S/N
Position resolution	~50 to 100 µm space point resolution	To be evaluated
Timing resolution	~ 4 ns with specific gas mixture	Goal: 25 to 50 ps for charged particle Goal: 50 to 100 ps for single photon detection
Area of application	Tracking: large-area, low-cost, precision position	PID: Time of flight (TOF) & photosensors for Cerenkov detectors

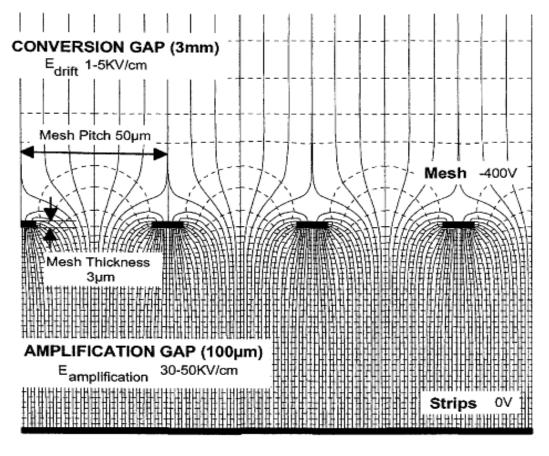
Radiation Detector & Imaging Group

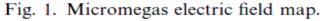
05/18/2023

µRWELL-PICOSEC vs. MM-PICOSEC

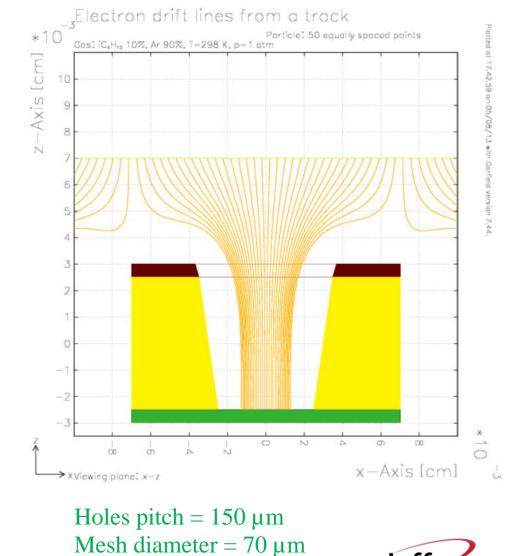
- ↔ µRWELL-PICOSEC and MM-PICOSEC belongs to the MPGD-based fast timing detector family
- Different amplification structure will allow different optimization of the technologies in term of operation stability and timing performance
- Parallel development of will mutually benefit the two technologies and offer options for applications

	MM-PICOSEC	µRWELL-PICOSEC	Comments
Radiator / photocathode	Same technology can be share by both	Same material can be shared by both	No difference
Pad readout structure	Same technology can be share by both	Same technology can be shared by both	No difference
Amplification structure	Metallic mesh (micromegas) → 128 µm gap (?)	Cu-clad Kapton foil → 50 µm gap ✓ (?)	Thinner gap \rightarrow expect better timing performance with μ rPICOSEC
Resistive / metallic	Both options available 🗸	Only resistive	Resistive → more stable Metallic → better timing
Segmentation MPGD	Segmentation of the metallic mesh will be challenging	μ RWELL Cu-electrode can be segmented (PEP) \checkmark	Signal from segmented uRWELL → improved timing performance (?)
MM-PICOSEC	Charged particle	µRWELL-PICOSEC	
		, 0.1 mm gas	
	e		
	+HV		


Jefferson


21

Lab


µRWELL-PICOSEC vs. MM-PICOSEC: Drift Field Lines

MM-PICOSEC

Mesh pitch = $50 \mu m$ Mesh width = $3 \mu m$ **µRWELL-PICOSEC**

22

Jefferson Lab

Radiation Detector & Imaging Group

Best time resolution for 1 p.e.

Gas mixture (Neon-Ethane-CF4)	U _{Amp} (V)	U _{Drift} (V)	echarge (pC)	amplitude (mV)	σ _{tres.} (ps)
80-10-10	275	525	8.58 ± 0.13	166.3 ± 0.2	43.89 ± 1.00
89-2-9	255	445	1.69 ± 0.01	31.56 ± 0.44	112.15 ± 4.03
80-20-0	270	470	0.54 ± 0.01	21.61 ± 0.18	129.21 ± 6.03
85-15-0	310	395	0.74 ± 0.01	22.83 ± 0.21	113.48 ± 4.66
90-10-0	340	340	0.82 ± 0.01	20.72 ± 0.09	150.23 ± 3.17
95-5-0	230	375	1.13 ± 0.01	22.98 ± 0.16	181.09 ± 8.91

- Ethane+CF4 allows higher electric fields and thus better time resolution
- Improvement with Ethane: less gain but narrower signal at higher field

RD51 Miniweek 11.02.2020 - PICOSEC-Micromegas

- Optimum mixture of only Neon-Ethane reached at 85-15

Lukas Sohl RD51 miniweek 11/02/2020

23

Radiation Detector & Imaging Group

Lukas SOHL

05/18/2023