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▪ Introduction to superconducting nanowire detectors
▪ Motivation for superconducting nanowires at the EIC
▪ Superconducting Nanowire Technology

– Superconducting Nanowire Single Photon Detectors (SNSPDs)
– Particle Detection
– Superconducting Electronics and Cryogenic Readout

▪ Ongoing and future R&D
– Current R&D
– R&D needed to realize EIC detector

▪ What can be done for a second detector?
▪ Summary

Overview
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Superconducting Nanowire Sensors

3



Typical device parameters
▪ Fabricated from ~10nm NbN 

film with Tc=15 K  [1]

▪ Typical meandering 
geometry fills the pixel area

▪ 100 nm wide wire, 
100 nm spacing 

▪ After etching device has
 Tc~ 5 K

▪ Current biased: 
Ib~ 10 - 40 µA

Superconducting Nanowire Single Photon Detectors

[1] Room temperature deposition of 
superconducting Niobium Nitride films by 
ion beam assisted sputtering. Polakovic 
et.al. APL Materials 6, 076107 (2018)
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https://doi.org/10.1063/1.5031904


▪ Photon energy thresholds as low as ~100 meV
▪ Timing jitter 20-40 ps easily achieved (current record of 3 ps)
▪ Reset times can be as low as 5-10 ns (potentially <1 ns in the future)
▪ Pixels on the order of 10x10 µm2 to 30x30 µm2

▪ Fast, granular, high-rate pixel detector → low occupancies
▪ Conveniently operates at LHe temperatures (T < 5K) 
▪ IR Photon detection efficiencies >90%
▪ Expected to very radiation hard (more on this later)
▪ Can be fabricated with different geometry or pixel dimensions  

SNSPD Properties and Characteristics
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Quick Summary “Almost too good to be true”
T. Ullrich, Technology Inventory



SNSPD Theory of Operation
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▪ Photon breaks cooper pair (b), 
causes hot-spot to form (c), 
Joule heating causes normal conducting 
hotspot to grow to width of wire (d), 
current through wire is reduced (e), 
superconductivity recovered (a).

▪ Voltage pulse has extremely fast 
rise-time, and the tail (d)→(e)→(a) is set 
by LR circuit, wire material/geometry, and 
other current shunts

▪ A single wire firing once injects about 2 fJ 
of energy into the system (or 124 keV)



Strong Magnetic Fields
SNSPDs operated in fields up to 5T

• Sensors can operate in fields up to (at least) 
7T with parallel field orientation 

• Operate at high rates with nearly zero dark 
count rate.

NIM A 959 (2020) 163543

https://doi.org/10.1016/j.nima.2020.163543


Particle Detection Status
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● Note that the alpha particles deposit almost 
103 more energy in NbN

● Demonstrating high energy proton detection 
is the key test needed for the EIC

○ No show stoppers expected…

Preliminary Results with α Particles
Particle Energy

Approximate Energy loss in

Detected100 μmsilicon 15 nm NbN

photon 0.1 eV - 2 eV all all ✔

alpha 5 MeV 5 MeV 9.1 keV ✔

beta 1 MeV 15 keV 15.8 eV ✔

electron 100 MeV 100 keV ~100 eV ?

proton 120 GeV 40 keV 24 eV ✔

pion /muon 10 GeV 30-45 keV ~20 eV ✔



Superconducting Nanowires at the EIC
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Electron-Ion Collider

▪ Far forward/backward particle detection (<10 sigma)
▪ Superconducting magnet integrated tracker
▪ High resolution zero-degree tracking calorimeter
▪ High rate Compton polarimeter e/gamma detector
▪ Beam position and beam loss monitors
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e-

5 GeV - 18 GeV41 GeV, 100-275 GeV

p/A

Superconducting Nanowire Particle Detectors



Beam Loss Monitors at Accelerators

Anticipate similar applications at the EIC
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Ongoing and Future R&D
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SUPERCONDUCTING NANOWIRE DETECTORS 
FOR THE ELECTRON ION COLLIDER 

Superconducting nanowires have never been deployed in 
a particle or nuclear physics experiment to our knowledge. 
As such, this proposal represents a true spirit of detector 
R&D. This project will have to solve many issues before it 
would have a working detector as indicated above. There 
are interesting synergistic activities with other projects 
under this program such as the polarimetry measurement. 
The idea to test a device in the Fermilab test beam and 
study the response to protons, electrons and pions is a 
very worthwhile exercise and would provide new 
information. We strongly recommend that at the least this 
aspect of the project is supported, funding permitting

Successful proposal for EIC Detector R&D at BNL: eRD28
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BNL EIC Detector R&D Committee:



Fermilab Test Beam Setup
Cryostat on motion table 

Beam 
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Fermilab Test Beam Facility - TSW1962
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Tomas Polakovic



Preliminary Results with 120 GeV Protons
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Raw waveforms in timing coincidence with the scintillator signal
Data taken with 120 GeV Protons
at Fermilab Test Beam Facility.

Courtesy of 
Sangbaek Lee



Cryogenic Readout and Scaling R&D 
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Hybrid Cryogenic Detector Architectures for Sensing and 
Edge Computing enabled by new Fabrication Processes

HYDRA microelectronics co-design project

HYDRA 
Project
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● Timely microelectronics R&D focused on cryogenic 
sensors and readout

● Project will produce first Cryo-CMOS ASIC for high 
channel count detectors at the EIC

● Fermilab is developing a cryo-CMOS ASIC 
architecture

● MIT is leading the development of superconducting 
electronics

● Argonne is leading the particle detector thrust
● JPL is investigating new interfacing technologies



Cryo-CMOS ASIC Development
▪ Operation at <4K demonstrated in modern, state-of-the-art commercial 

processes (no special processing)

▪ Leverage low power, high performance ASICs for signal conditioning, 
time-tagging, data concentrator/edge computing, and serialization/readout

▪ Highlights:
– SiGe HBT (high performance LNA)
– FDSOI with backgate control to compensate for threshold increase at cryo

▪ Fermilab and EPFL currently collaborating on EAD-compatible cryo-electronic 
models for Global Foundries’ 22nm FDSOI

HYDRA

Fermilab’s 22nm prototype

Amplification could be done
in either xTron or ASIC
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HYDRA 
Project



Superconducting electronics connecting detector and cryo-CMOS
Lead by Karl Berggren’s group at MIT 

HYDRA

● Developing digital electronics components using 
superconducting nano-cryototron (ntron) devices

● Fabricated with same NbN as SNSPDs.
● A preamplifier ntron is the simplest interface 

between sensor and cryo-CMOS
● Recently developed at MIT

○ A superconducting binary shift register for 
SNSPD readout (R. Foster)

○ Binary and Multilevel Counter (M. 
Castellani)

○ Building Blocks Design for 
Superconducting Nanowire 
Asynchronous Logic (A. Buzzi)

● More complex designs may exploit material’s 
high kinetic-inductance in the future.
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HYDRA 
Project

Sensor integrated superconducting electronics 
provides important/new capabilities:

● Pre-ASIC data reduction and processing
● Subsystem trigger or feature extraction
● Novel spiking neutral network architecture
● Edge/Neuromorphic computing 

possiblities



EIC-related Generic Detector R&D

JLab test-bed
a. Baseline background error rate

for superconducting shift registers
b. SNSPD efficiency in high radiation environment
c. Single Event upset cross-section

for prototype cryo-CMOS ASIC

Submitted in July 2022
● Proposed R&D radiation hardness tests of SNSPDs, 

superconducting electronics and cryo-CMOS
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▪ Establish cryogenic testbed at JLab (similar to one at FTBF).
▪ Located in Hall C near beam height, with 10 m Helium gas lines will connect to a 

water-cooled  Helium compressor
▪ Will test SNSPDs, superconducting electronics devices, and cryo-CMOS prototype (if 

available)
▪ Quantify single event upset cross-section, displacement damage, and other 

cumulative damage
▪ Will monitor radiation exposure and produce estimates of the accumulated dose and 

scaled neutron fluence

EICGENRandD_2022_18

Delayed start due to arrival of funds



▪ State-of-the-art fabrication capabilities meet the current need of small scale devices for 
proof-of-principle devices and R&D but quickly reach their limits when scaling to wafer 
scale devices requiring high yields.

▪ Multi-institutional research proposal to be submitted responding to “Accelerate 
Innovations in Emerging Technologies” FOA aimed at superconducting nanowire 
technology at scale

▪ Wafer scale yields are needed to build the detectors needed for many future 
applications including the EIC

Scaling Fabrication for the EIC
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Solving the technical barriers towards large-scale detectors

Example of tuning etching: Under, over, and good etching

- Many Materials and processes to explore
- Requires significant investment in basic research
- Need to bridge the gap between novel 
technology and large scale applications
- Broad applications far beyond the EIC and NP



Applications at the EIC

23



Cooling infrastructure
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Conceptual layout of beamline detector

● Our nanowire detectors operate at LHe temperatures 
~4K

● We can tap into the upgraded 4.5K and 2K 
cryosystems for the EIC at BNL

● A conservative estimate for a wire is roughly 20 nW 
when it is latched – normal conducting state with most 
current going through shunt resistor

● The total power of the sensors does not necessarily 
scale with area – it is set by the number of wires

● With a detector area of 25cm x 10cm, if all sensors 
latched (a malfunctioning detector with 100% 
occupancy) it would load the cryosystem with ~0.5 W. 



▪ We can use  nanowire tracking detectors in a 
Roman pot configuration

▪ Ultrafast timing –  demonstrated to be less than 
20 ps

▪ Small basic pixel size, allowing for sub-μm 
position precision if needed.

▪ Edgeless sensor configuration – sensitive 
element positioned to within a few 100 nm of 
the substrate edge, eliminating detector dead 
zone.

▪ Wide choice of substrate material – the 
detectors can be fabricated on membranes as 
thin as few 10 μm, cutting down on material 
thickness.

▪ Radiation hardness – operate in close proximity 
of the beam and interaction regions with long 
lifetime. (A focus of the proposed R&D)

 

Far Forward Detector
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Superconducting Magnet integrated particle detector 

SS Vacuum Pipe Beam Screen - Copper liner 
(coated with carbon to reduce secondary electron 
yield)
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● Avoid the “dead zone” 
between roman pot detectors 
and B0 detectors

● Tie into superconducting 
magnets’ 4K supply

● Design a mechanical/thermal 
mounting location in the bore 
of the magnet

From Figure 8.125 of 
YR



Neutral particle detector
▪ A radiation hard pixel detector 

could provide useful tracking 
for the ZDC

▪ Also a photon (or electron) 
detector for compton 
polarimeter which can operate 
at high rate and last the 
lifetime of the EIC. 

27



▪ Novel roman pot configurations leveraging unique capabilities (rad-hard, fast, 
sub-micron position, high B operation):
– Low Q2 far backward detector 
– Far forward ion detectors with secondary focus
– PID of excited nuclear states (far-forward TOF)

▪ Superconducting magnet integrated detectors (cold mass coupled tracking 
detectors)
– Fully hermetic tracking design from far-forward to far-backward.

▪ Likely more ideas for configurations to come… 

Unique opportunities for 2nd Detector
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Summary
▪ Superconducting Nanowire technology is “Almost too good to be true”
▪ 120 GeV proton detection has been demonstrated at FTBF (no surprises)
▪ Significant R&D effort tackling cryogenic readout architecture is underway 

(HYDRA)
▪ Targeted EIC-related generic R&D efforts to understand radiation hardness and 

component-wise cryogenic readout operation
▪ Will address the scaling barriers with future R&D – the last piece needed to 

realize applications at the EIC

Indeed, superconducting nanowire detectors “Needs R&D”, but it is certainly not too 
futuristic.
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Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

Thank you!
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Backup 

31



Nanowire devices for particle detection

32

DesignPhysical device (chip)

Wire bonding contact pad

Local alignment marks Contact lead

Fabricated by 
Tomas Polakovic 



2-inch wafer
8 mm chips
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SUPERCONDUCTING NANOWIRES
Overview of Nanowire Detectors
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• Sensors can operate in fields up to (at least) 7T, can operate 
inside of cold bore of superconducting magnets (T< 5 K).

• Novel concept for high-resolution rad-hard detectors based 
around superconducting nanowires (early R&D stage)

• Near-beamline detectors for tagging low energy electrons (low 
Q2) and in the far-forward region.

1) Room temperature deposition of 
superconducting Niobium Nitride films 
by ion beam assisted sputtering. APL 
Materials 6, 076107 (2018)

2) Superconducting nanowires as 
high-rate photon detectors in strong 
magnetic Fields. NIM A 959 (2020) 
163543

3) Unconventional Applications of 
Superconducting Nanowire Single 
Photon Detectors. Nanomaterials 
(2020), 10, 1198.
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