hpDIRC Detector for EIC Detector II

Greg Kalicy

- hpDIRC concept for ePIC and its flexibility
- Design and performance
- Exploring theoretical limits
- Current and future R&D

DIRC CONCEPT

BABAR	SuperB	Belle I	GLUE	Fanda	Fanda	ePI

Detection of Internally Reflected Cherenkov Light

- Pioneered by the BaBar experiment at the SLAC National Accelerator Laboratory
- Fused silica radiator is used also as light guide
- Detector surface is outside active volume
- Cherenkov angle is conserved during internal reflections and reconstructed from detected photons
- Ultimate Deliverable: PID likelihoods

Accumulated hit pattern (Geant4)

G.Kalicy, CUA | hpDIRC Detector | International Workshop on a 2nd Detector for the Electron-Ion Collider | May 19, 2023

HPDIRC CONCEPT

High-performance DIRC Concept

- Concept developed as part of Generic R&D program (eRD14)
- Finalizing design, risk mitigation as part of Project R&D (eRD103)
- Future DIRC R&D in new Generic R&D program (EICGENRandD12)

Key Features:

- > Fast focusing DIRC, utilizing high-resolution 3D (x,y,t) reconstruction
- Design based on BaBar DIRC, R&D for SuperB FDIRC, PANDA Barrel DIRC
- Radiator/light guide: narrow fused silica bars (radius/length flexible)
- Innovative 3-layer spherical lenses
- Compact fused silica prisms as expansion volumes
- Fast photon detection: small-pixel MCP-PMTs and high-density readout electronics
- ▶ Detailed Geant4 simulation: ≥ 3 s.d. π/K separation at 6 GeV/c,

 \geq 3 s.d. e/ π separation at 1.2 GeV/c

BASELINE HPDIRC DESIGN FOR EPIC

Radiator bars:

- Size: 4580mm x 35mm x 17mm (L x W x T)
- Barrel: 700mm radius, 12 bar boxes, 10 long bars per bar box long bar: 4 bars glued end-to-end, flat mirror on far end baseline design: reuse of BaBar DIRC bars (R&D started)

Focusing optics:

Radiation-hard 3-layer spherical lens (sapphire or PbF₂)

Expansion volume:

Solid fused silica prism: 240 x 360 x 300 mm³ (H x W x L)

Readout system:

MCP-PMT Sensors (e.g. Photek/Photonis/Incom) ASIC-based Electronics (e.g UH/Nalu Scientific, EICROC)

 Several core design aspects, as well as detailed Geant simulation, validated in PANDA Barrel DIRC beam tests (prototype tests in cosmic rays and test beams in preparation)

EXPECTED EPIC HPDIRC PERFORMANCE

FLEXIBILITY OF HPDIRC DESIGN

- hpDIRC PID performance largely independent of number of sectors, barrel radius, and bar length – design can be optimized for integration
- Expansion volume shape can be optimized for MCP-PMT magnetic field performance (tilted sensor plane)

HPDIRC BEYOND EPIC

- hpDIRC baseline design performance matches requirements for ePIC
- > Reuse of BaBar DIRC bars limited some ePIC hpDIRC optics design options
- Several aspects of design and components have potential for improvement
- Performance limits and novel optical designs are explored with Geant simulation in generic R&D program (EICGENRandD12).
- Selectively disable physics processes, evaluate performance
- Isolate impact of detailed performance parameter on separation power
- Started simulation study of fundamental DIRC performance limits due to
 - multiple scattering in bar
 - chromatic dispersion of photon angle and propagation time
 - optical aberrations from focusing system
 - > pixel size

Main effects limiting future DIRC performance

- ➤ Loss due to multiple scattering (MS) inside the bar dominates at lower momentum
 → possible mitigation: thinner bar, post-DIRC tracking
- ➤ Loss due to chromatic dispersion (CD) of angle and time dominates at higher momentum
 → possible mitigation: limit spectral acceptance
- Significant aberrations from current focusing system design
- Some (limited) gain from decreasing pixel size

 π/K separation of ePIC hpDIRC– physics processes

Main effects limiting future DIRC performance

- ➤ Loss due to multiple scattering (MS) inside the bar dominates at lower momentum
 → possible mitigation: thinner bar, post-DIRC tracking
- ➤ Loss due to chromatic dispersion (CD) of angle and time dominates at higher momentum
 → possible mitigation: limit spectral acceptance
- ➤ Significant aberrations from current focusing system design
 → possible mitigation: hybrid optics, aspherical lenses
- Some (limited) gain from decreasing pixel size

 π/K separation of ePIC hpDIRC – with theoretical "ideal focussing"

Main effects limiting future DIRC performance

- ➤ Loss due to multiple scattering (MS) inside the bar dominates at lower momentum
 → possible mitigation: thinner bar, post-DIRC tracking
- Loss due to chromatic dispersion (CD) of angle and time dominates at higher momentum
 - \rightarrow possible mitigation: limit spectral acceptance
- ➤ Significant aberrations from current focusing system design
 → possible mitigation: hybrid optics, aspherical lenses
- Some (limited) gain from decreasing pixel size

→ possible mitigation: 2-inch MCP-PMTs with 1.6 mm pixel size and small SiPM are already commercially available

32x32 pixels (1.6 mm) per 2" MCP-PMT

Main effects limiting future DIRC performance

- ➤ Loss due to multiple scattering (MS) inside the bar dominates at lower momentum
 → possible mitigation: thinner bar, post-DIRC tracking
- ➤ Loss due to chromatic dispersion (CD) of angle and time dominates at higher momentum
 → possible mitigation: limit spectral acceptance
- ➤ Significant aberrations from current focusing system design
 → possible mitigation: hybrid optics, aspherical lenses
- Some (limited) gain from decreasing pixel size

→ possible mitigation: 2-inch MCP-PMTs with 1.6 mm pixel size and small SiPM are already commercially available

EICGENRandD12 investigates ways to mitigate these performance limits

- Examples of EICGENRandD12 geometry studies
- > Thinner bars could mitigate multiple scattering effects in DIRC bars
 - > Improve DIRC performance at low momentum, especially for e/π
 - Reduce impact on EMCal performance
 - Make focusing less demanding
- Hybrid optics (narrow bars in active area, wide plates as light guides)
 could mitigate focusing errors and reduce cost
 - Expansion volume effectively starts at end of narrow bar, improving angular resolution, possible use of cylindrical lens
 - Longer expansion in plate in plate could make shorter prism possible, with smaller sensor area, possibly enabling use of SiPM

SUMMARY AND OUTLOOK

- Performance of hpDIRC baseline design good match to ePIC PID requirements but planned reuse of BaBar DIRC bars limits some ePIC hpDIRC design options
- Study of effects currently limiting hpDIRC performance revealing potential avenues for future R&D
- New Generic DIRC R&D explores innovative optical DIRC configurations to create opportunities for cost reduction, performance improvement, and complementarity
 - Narrow bar/wide plate hybrid could improve the performance and save cost
 - Novel hybrid lens configurations may enable designs with more compact prisms, reducing the material budget, potentially making SiPM a viable option for the hpDIRC
 - > Thinner bars reduce the DIRC material budget, lowering the impact on the EMCal; reduction of multiple scattering inside the bar could improve the DIRC e/π separation

