1ST INTERNATIONAL WORKSHOP ON A 2ND DETECTOR FOR THE ELECTRON-ION COLLIDER

Temple University, Philadelphia, PA May 17-19, 2023

ePIC Backward RICH

1st International Workshop on a 2nd Detector for the EIC

Prakhar Garg

YR Requirements for PID in backward direction

Yellow report requirement: 3 sigma pion/K separation up to 7 GeV/c ePIC new requirement: provide ~20 ps timing reference for ePIC ToF detectors

The Devil is in the details

- Tolerable material budget (Living in Harmony With Neighbors)
- Large acceptance
- Output Description Of the Uniform performance
- Reconstruct scattered electrons
- High electron purity down to low p
- Magnetic Field Susceptibility
- Cooling
- Support structure
- Long term stability
- October Cost
- Rate Capability
- Radiation Hardness
- Mechanical stability
- And what not

pfRICH in general

- Large proximity gap
- Thin aerogel radiator
- High enough spatial resolution in the photosensor matrix, detector = low transit time spread
- Weak $n(\lambda)$ dependency in the photosensor effective quantum efficiency (QE) range
- Sufficient number of detected photons per track

ePIC pfRICH: Overview

TEMPLE '' the EQUILE SITY VERSITY

Aerogel Selection

- > HRPPD PDE is expected to be substantially smaller than of the SiPMs
 - And peak value shifted to the UV range, where it cannot be used for ring imaging
- > Therefore working with <n> ~ 1.020 does not look feasible (<N_{pe}> too small)
- Consider using n ~ 1.040 ... 1.050
 - 300 nm acrylic filter cutoff for imaging
 - <N_{pe}> ~ 11-12
 - For ToF still make use of the UV range for abundant Cherenkov light produced in the window
 - Natural choice for simulations: Belle II n \sim 1.045 \bullet
 - Natural hardware reference: Chiba University ulletaerogel recently produced for J-PARC (n = 1.040)

LAPPDs / HRPPDs by Incom Inc.

- Single-photon timing resolution on a ~50ps level or higher

Vessel Design and Assembly

1st International Workshop on a 2nd Detector for the EIC

Simulated Performance

Performance of Separation Power

Momentum Vs Cherenkov angle (track)

(a) Reconstructed Cherenkov angle for particles as a function of particle momentum

Acceptance and Number of detected photons

Number of photons detected for 7 GeV/c pion at -2.0 pseudo-rapidity

(finite primary vertex distribution width of $\sigma \sim 10$ cm along the beam line at the IP)

1st International Workshop on a 2nd Detector for the EIC

pfRICH acceptance as a function of pseudo-rapidity. Apart from the acceptance boundary areas, a constant value greater than 95% is achieved.

K detection efficiency and pion rejection close to saturation angles

e- π and π /K Separation Power

(a) N_{σ} separation between the electron an pion hypotheses as a function of momentum for different bins of pseudo-rapidity.

 $N_{\sigma} = \frac{\theta_e - \theta \pi}{(\sigma_e + \sigma_{\pi})/2}$

Lots of details can be found in pfRICH CDR

The current version can be found on the ePIC Wiki https://wiki.bnl.gov/EPIC/index.php?title=PfRICH info

1st International Workshop on a 2nd Detector for the EIC

A Proximity-Focusing RICH for the ePIC Experiment - Conceptual Design Report -(Draft 1.1)

Babak Azmoun¹, Deb Sankar Bhattacharya², Daniel Cacace¹, Helen Caines³, Chandradoy Chatterjee², Jaydeep Datta⁴, Abhay Deshpande⁴, Christopher Dilks^{5,6}, James Dunlop¹, Alex Eslinger⁶, Prakhar Garg^{4,3}, Tom Hemmick⁴, Alexander Jentsch^{*},¹, Alexander Kiselev^{*,1}, Henry Klest⁴, Samo Korpar⁷, Peter Križan⁷, Jeffery Landgraf¹, Tonko Ljubicic¹, Saverio Minutoli⁸, Charles-Joseph Naïm⁴. Mikhail Osipenko⁸, Brian Page^{*,1}, Sanghwa Park⁹, Matt Posik¹⁰, Rok Pestotnik⁷ Andrej Seljak⁷, Prashanth Shanmuganathan¹, Nikolai Smirnov³, Bernd Surrow¹⁰, Makoto Tabata¹¹, Silvia Dalla Torre², Zhoudunming Tu^{*,1}, Thomas Ullrich^{*,1,3}, Jan Vanek¹, Anselm Vossen^{5,6}, Craig Woody¹, and Zhengqiao Zhang¹

¹Brookhaven National Laboratory, Upton, New York 11973, USA ²INFN, Sezione di Trieste, Trieste, Italy[†] ³Yale University, New Haven, Connecticut 06520, USA ⁴Stony Brook University, Stony Brook, New York 11794, USA ⁵Duke University, Durham, North Carolina 27708, USA ⁶Jefferson Lab, Newport News, Virginia 23606, USA[‡] ⁷Ljubljana University and J. Stefan Institute, Ljubljana, Slovenia[§] ⁸INFN, Sezione di Genova, Genova, Italy ⁹Mississippi State University, Mississippi State, Mississippi 39762, USA ¹⁰Temple University, Philadelphia, Pennsylvania 19122, USA ¹¹Chiba University, Chiba, Japan[¶]

April 5, 2023

Complementary vs. Overlap in the context of IP8

Dual aerogel configuration

- HERMES and LHCb like with a combination with focusing mirrors?
- Output Description Of the second strain of the s
- Some heavy gases in the expansion volume to have threshold mode

And many more

Having only one method to cover wide range of p for PID is difficult

Of course for IP8, the Magnet and integration will guide the design

pfRICH as a concept is a well tested detector by other experiments

