1st International Workshop on a 2nd Detector for the EIC

Renuka Rajput-Ghoshal (JLab)

Design considerations and constraints for the ePIC magnetic field

May 19, 2023

Outline

- Magnet from Various Perspectives
- Practical Problems with Larger Magnets
- ePIC Detector Solenoid (MARCO) Overview
- ePIC Detector Solenoid Magnet Specifications
- 3D Magnetic Design Results with Single Long Coil

- 3D Magnetic Design Results with 3- Module Coil
- Al-cladded vs Cu-cladded conductor
- Conductor definition
- Margin @ 4.7 K
- Magnet Assembly
- Cross-sectional view-Exploded view
- How We work
- Summary

Magnet from Various Perspectives

Magnet User/Physicist:

- •Maximum field strength,
- •Very high field homogeneity over a larger volume

•No-to-minimum space,

- •fastest ramping, no quenching,
- •Absolute transparent (least amount of material)
- •No fringe/stray field

•...

reuse of existing old magnet

Magnet Manufacturer/Industry:
Maximum margin (low field),
Low Homogeneity/ no stringent requirement
No space Constraint
Maximize probability of success on 1st ramp (90% of nominal is "Good Enough")
Minimum cost to build with maximum profit
No restriction on material usage
Other nearby things like detectors are not so important

- Magnet Engineer-3rd perspective:
 - Somewhere between these 2 perspectives!
 - The most rational agent in the equation that can bring together both sides,
 - Come-up with a practical solution and reasonable agreement between the above 2 perspectives

Practical Problems with Larger Magnets

- Stored Energy
 - Larger the volume, higher the stored energy
 - Higher the field, higher the stored energy
 - ePIC magnet stored energy is approximately 50 MJ A Honda Pilot Car going on 480 miles per hour speed!!
 - Energy management during a quench
- Material/ Conductor Availability
 - Conductor- largest market for conductor is MRI magnets
 - The big detector projects come around every 15-30 years around the world
 - All detector magnets have unique requirement and design aspects
- Manufacturability
 - One-off magnets, therefore, no prototyping
 - Limited vendor base
 - The big detector projects are not frequent, therefore, by the time next big project come there is no experienced people available

- All this leads to longer design time and longer built time
- Testing
 - Testing can only be done at site
 - Longer installation time

ePIC Detector Solenoid (MARCO) Overview

Superconducting Detector solenoid

- 3.5 m long coil, 2.84 m room temperature bore diameter, 2 T on-axis field
- Operating Temperature 4.5 K
- Conductor: Copper Cladded, Rutherford Cable made with NbTi superconducting strands

Based on existing BABAR design and drawings

5

ePIC Detector Solenoid Magnet Specifications

Parameter	Detector 1-Solenoid	Comments
Nominal Central Field at IP (T)	2	Safe Operation
Operating Field Range (T)	0.5-2.0	
Magnetic Field Polarity	Bipolar	
Coil length (mm)	3492	
Warm bore diameter (m)	2.84	To keep the same envelope as
Cryostat length (m)	<3.85	the existing BaBAR magnet
Cryostat outer diameter (m)	<3.54	
Flat Field area	± 100 cm around center 80 cm radius	
Field uniformity in Flat field Area (%)	12.5	
RICH area	From z=+180 cm to 280 cm	1. Magnetic field properties
Projectivity in RICH Area	0.1	2. Stray field requirement is
(mrad@30GeV/c)	0.1	based on IR magnet location
Projectivity in RICH Area (T/Amm ²)	10	
Stray field requirement	<10 G @ z=-5.3 m, @z=+7.4 m, and @R=3.4 m	
Charging voltage (V)	10	
Fast discharge voltage maximum (V)	500	
Quench hot spot temperature (K)	<150	
Temperature margin (K)	>1.5	
Current margin (%)	<30	
Charging time (hr)	2-3	
Cooldown time (weeks)	3-4	
Cooling scheme	Thermosiphon	
Conductor	Cu Stabilized NbTi Rutherford cable	
Operating Temperature	4.5	

Electron-Ion Collider

3D Magnetic Design Results with Single Long Coil

Parameter	Parameter Value	Units	Validation
Coil R _{in}	1509.5	mm	ОК
Coil R _{out}	1543.1	mm	ОК
Coil Length	3492.0	mm	ОК
	3D RESULTS		
В @ (0,0,0)	2.000	Т	ОК
Bpeak+self field	2.602	Т	
Stored Energy	45.7	MJ	
B @ (0,0,-5300)	~13	G	Tbd
В @ (0,0,7200)	<10	G	ОК
B @ (3400,0,0)	<10	G	ОК
Projectivity	2.41	T/Amm²	ОК
Homogeneity	12.3	%	Validated by physics group

Homogeneity region

B field along Z axis

RICH Projectivity

3D Magnetic Design Results with 3- Module Coil

Parameter	Specifications	Design parameters after 60% design
Nominal Central Field at IP (T)	2	2.02
Peak Field on the conductor (T)		2.6
Stored Energy of the magnet (MJ)		45.73
Inductance o the magnet (H)		5.94
Coil length (mm)	3492	3492
Warm bore diameter (m)	2.84	2.84
Cryostat length (m)	≤3.85	3.85
Cryostat outer diameter (m)	≤3.54	3.54
Field uniformity in Flat field Area (%)	12.5	12.3
Projectivity in RICH Area (A/Tmm ²)	10	2.41
	<10 G @ z=-5.3 m,	13.7 G @ z=-5.3 m,
Stray field requirement	@z=+7.4 m, and	8.8 G @z=+7.4 m,
	@R=3.4 m	1.5 G @R=3.4 m
Charging voltage (V)	10	6
Fast discharge voltage maximum (V)	500	500
Quench hot spot temperature (K)	<150	71.4
Temperature margin (K)	>1.5	2.5
Current margin (%)	<30	28.8
Charging time (hr)	2-3	3
Cooldown time (weeks)	3-4	3
Operating Temperature	4.5	4.7

Al-cladded vs Cu-cladded conductor

- The materials in the EIC detector, including those in the solenoid, need to be consistent with the overall material budget that allows detection of relevant particles for EIC science, with their specific energies.
- At the EIC, the barrel Hadron Calorimeter (bHCal) needs to act as tail catcher following the barrel Electromagnetic Calorimeter (bECal) that is ~ 1 λl (nuclear interaction length). This implies that the solenoid material needs to be "light" (~1.3 λl) to contain 95 % of the hadrons with energy of science interest in EIC.
- This leads to the need for all the material thickness to be less than 1 interaction length (lower the better). The current material budget for Marco 2T design is well within this limit.

	Thickness/Nuclear interaction length			
Material	BaBAR	ATHENA/SOCRATE	Marco 1.5 T	Marco 2T
Al	0.382	0.650	0.113	0.113
Cu	0.011	0.170	0.114	0.166
SS/Brass	0.000	0.417	0.136	0.181
NbTi	0.007	0.020	0.003	0.008
G10			0.023	0.028
Total	0.400	1.258	0.367	0.468

2T Marco is almost similarly transparent as BaBAR

Conductor definition

	Parameters	Values	Units
	Strand diameter	0.7	mm
σ	Cu/NbTi	1.3	
tran	Ic @ 2.6T & 4.7K	> 680	А
S	Filament diameter	< 30	μm
	RRR Cu	> 80	
ble	NbTi strands	20	
Cal	Transposition pitch	50	mm
nnel	RRR Cu	> 100	
Chai	Copper section (Final)	43.7	mm²
	Nominal current	3924	А
	RRR conductor	> 100	
tor	Temp. margin @ 2.6T & 4.7K	2.5	К
nduc	Hot spot Temperature	71.4	К
S	σ _{0.2%} @ 293K	> 165	MPa
	Unit length (supposed)	1.05	km
	Total length (supposed)	18.9	km

Dimensions are in mm

Order of conductor samples put in place based on these specifications !

Electron-Ion Collider ¹⁰

Margin @ 4.7 K

B ₀	1.5 T	1.7 T	2.0 T	Units	
Current	2900	3296	3924	А	
B _{peak}	1.925	2.187	2.602	Т	
Temp. margin	3.1	2.9	2.5	К	> 1.5
Load line margin	60.6	55.3	46.8	%	
I / Ic(T _m ,B _{peak})	17.3	21.3	28.8	%	<30 9

Bottura scaling law [1]

Parameters for the fit (C.R. Spencer)

Bc20	14.5 [T]	α	0.57
Tc0	9.2 [K]	β	0.9
n	1.7	γ	1.9
C0	73000 [TA/mm²]		

I_c degradation: 15%

Iseult conductor	Ic degradation
Cabling process	<5%
Soldering process	<5%

[1] Luca Bottura. A practical fit for the critical surface of NbTi. IEEE transactions on applied superconductivity, 10(1):1054–1057, 2000.

Magnet Assembly

Magnet Assembly

Parametric models have been created based on existing BABAR design and drawings Components will be revised upon completion of mechanical analysis

12

Cross-sectional view-Exploded view

How we work

- Collaboration of Jefferson Lab, CEA Saclay and Brookhaven National Lab
- 30% Design done as in-kind contribution by CEA Saclay in collaboration with Jefferson Lab Magnet Group
- BNL provides subject matter expert information on infrastructure and integration
- 60% design done as contract with CEA Saclay augmented with Jefferson Lab work and further in-kind contributions of CEA Saclay
- 90% design work is in progress in collaboration with CEA Saclay
- Expectation is that vendor contract may follow similar pattern for vendor oversight.

Electron-Ion Collider

 Further discussions ongoing on international engagement on magnet construction phase.

Summary

- Specifications
 - Should be clear and concise
 - Understand the implications of not meeting one or more specifications
 - Importance of various design parameters
 - Do not over constrain the magnet design
- Discussions with Magnet Engineers from the beginning of the project
- Discussions with Vendors at various stages of design (if possible)
- Design the magnet in collaborations with detectors design
- Detailed information about the environment that the magnet is required to operate in (Materials: support structure, equipment, target, etc.)
- Do not limit the magnet design by predetermining the type of conductor
- Magnet Design for ePIC detector magnet is very mature, 90% design review is scheduled for October.
- Sample conductor order placed.