An Update on HRPPD/LAPPD Application Specific Developments for EIC

A. Lyashenko (on behalf of Incom Inc.)

Enabling Technology: GCA-ALD-MCP

Large Area Picosecond Photon Detector (LAPPD)

LAPPD evolution:

Glass, Capacitively Coupled Readout, Fused Silica Window

Glass, Stripline Readout, Borosilicate Glass Window Ceramic, Capacitively Coupled Readout, Fused Silica Window, Reduced Gaps

5/19/2023

Capacitively Coupled LAPPDs: typical specs

- 20 cm × 20 cm MCP-PMT
 - Chevron pair GCA-ALD-MCPs(10 μ m or 20 μ m)
 - Glass/Ceramic package
 - 373 cm² effective area (~74% active area ratio)
- High Gain (>5*10°)
- Dark Rates: <10kHz/cm²
- Sodium-Potassium-Antimony Na₂KSb
 - >20% QE at 365 nm
 - >80% spatial uniformity
- Timing Resolution
 - SPE: <100 psec
- Spatial Resolution
 - O(mm) (dependent on readout board)
- *Magnetic Field Tolerance up to ~1.4 T

Na₂KSb photocathode development

QE of ≥27% and ~80% uniformity consistently achieved!

QE

An Update on HRPPD/LAPPD Application Specific Developments for EIC

QE (%): 29.4 ± 1.1 Max (%): 31.5

QE

5

QE (%): 27.8 ± 0.89 Max (%): 30.3

QE

Na₂KSb photocathode development

QE measurement setup with Laser Driven Plasma Light Source

0.40

0.35

0.30

0.25

0.15

0.10

0.05

0.00 <u>–</u> 100

200

J 0.20

Performance of LAPPD with Capacitively Coupled Readout

5/19/2023

An Update on HRPPD/LAPPD Application Specific Developments for EIC

HRPPD - High Rate Picosecond Photodetector

10 cm x 10 cm MCP-PMT
Chevron pair GCA-ALD-MCPs (10 μm)
Ceramic package
Capacitive (CC) or Direct (DC) Coupling
100 cm² active area

High Gain (5*10⁶)
Dark Rates: <10kHz/cm²

- Photocathode Na₂KSb
 - >20% QE at 365 nm
- >80% spatial uniformity
 - Timing Resolution
 - SPE: <50 psec
- Position Resolution (TBD)

HRPPD Performance

9

HRPPD Performance in B-field

10

HRPPD Performance in B-field: Gain Recovery

LAPPD EIC Workshops

https://indico.bnl.gov/event/18642/

https://indico.bnl.gov/event/17475/

5/19/2023

Possible LAPPD applications for the EIC

Backward RICH: low dark noise, ToF capability (vs SiPMs)

- LAPPD is a baseline photosensor as of November 2022
- DIRC: expected to be more cost-efficient (vs other MCP-PMTs)
- dRICH: problematic, because of the magnetic field orientation

DIRC: 12*3*2 = 72 HRPPDs total6

Slide Courtesy A. Kiselev, 2023 BNL LAPPD workshop https://indico.bnl.gov/event/18642/

Backward RICH

- DC-coupled HRPPDs
- 32x32 pad pixellation
- TOA / TOT(ADC) ASIC
- Flat integration

Image Courtesy A. Kiselev, 2023 BNL LAPPD workshop https://indico.bnl.gov/event/18642/

5/19/2023

HRPPD EIC ePIC Specific Detector Development

Project Schedule

	Task		2023											
			Feb	Mar	Apr	May NOV	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
0.	Project Management													
1.	Window to Ceramic Sealing (60%)													
2.	Anode Design and Fabrication (50%)													
3.	Internal Connections (80%)													
4.	Internal Components Design and Procurement (80%													
5.	Readout Board Design (50%)													
6.	Performance/Process Optimized (50%)													
7.	BNL/EIC Tile Test Plans													
8.	Fabricate 5 HRPPDs for EIC delivery													

HRPPD Anode Development

Two Test Anodes Fabricated by Techtra

Electrical integrity verified Trace capacitance have been measured to be within 10pF

5/19/2023

Ceramic HRPPD packages

Capacitively Coupled

Directly Coupled

HRPPD active area

19

5/19/2023

HRPPD active area

Rb-K-Cs-Sb photocathode trials

Tilability

Tilable capacitively coupled anode (75% OAR)

- LAPPD is an established photosensor technology
- HRPPD for EIC is being developed
- Magnetic field tests performed up to 2T. Gain 10⁶ is achievable at 2T.
- Manufacturing of first tiles for EIC will start in August