GLUON TMD OPPORTUNITIES WITH QUARKONIUM PRODUCTION AT A 2ND EIC DETECTOR

The Equinoctial

Francesco Giovanni Celiberto

UAH Madrid

1st INTERNATIONAL WORKSHOP ON A 2ND DETECTOR FOR THE EIC TEMPLE UNIVERSITY (PHILADELPHIA) - 18TH MAY 2023

Gluon TMD PDFs: a largely unexplored territory

- **Theory:** different gauge-link structures...
- ...more diversified kind of modified universality!

- Pheno: golden channels for extraction
- of quark TMDs are subleading for gluon TMDs

Gluon TMD PDFs: a largely unexplored territory

- **Theory:** different gauge-link structures...
- ...more diversified kind of modified universality!

Pheno: golden channels for extraction

of quark TMDs are subleading for gluon TMDs

3D proton imaging

Gluon TMD PDFs \Rightarrow core sector of EIC studies

Need for a flexible model, suited to pheno

Gluon TMD PDFs: a largely unexplored territory

- Theory: different gauge-link structures...
- ...more diversified kind of modified universality!

Pheno: golden channels for extraction

of quark TMDs are subleading for gluon TMDs

3D proton imaging

Gluon TMD PDFs \Rightarrow core sector of EIC studies

Need for a flexible model, suited to pheno

Gluon and nucleon polarization at twist-2

Window of opportunities also at a 2nd detector

Quarkonia: assets & challenges

<u>Onia</u> \Rightarrow <u>clean channels</u> of <u>f-type</u> gluon TMDs

Initial-state color flow \Rightarrow [-, -] gauge link

Sivers	$e p^{\uparrow} \rightarrow e' Q \overline{Q} X$ $e p^{\uparrow} \rightarrow e' j_1 j_2 X$
$f_{1T}^{\perp g[-,-]}$	\checkmark
$f_{1T}^{\perp g [+,-]}$	×

(overview) Ø [D. Boer (2017)]

Boer-Mulders	$e p ightarrow e' Q \overline{Q} , \ e p ightarrow e' j_1 j_2 ,$
$h_1^{\perp g [-,-]}(WW)$	\checkmark
$h_1^{\perp g [+,-]} (\mathrm{DP})$	×

Gluon TMD PDFs & quarkonia

Quarkonia: assets & challenges

Onia \Rightarrow clean channels of f-type gluon TMDs

- , –] gauge lin

$f_{1T}^{\perp g[-,-]} \qquad \checkmark$	
$f_{1T}^{\perp g [+,-]} \qquad \times$	

	(overview)	P	[D.	Boer	(20^{-1})
--	---	-----------	---	-----	------	-------------

Boer-Mulders	$e p ightarrow e' Q \overline{Q} , \ e p ightarrow e' j_1 j_2 ,$
$h_1^{\perp g[-,-]}(WW)$	\checkmark
$h_1^{\perp g [+,-]} (\mathrm{DP})$	×

$\eta_{c,b} \Rightarrow \text{LHC complementarity}, \text{TMD factorization}$

(factorization) 🔗 [M. García Echevarría (2019)] (pheno) [A. Bacchetta, F.G.C., J.-P. Lansberg, M. Radici, et al. (in progress)]

Gluon TMD PDFs & quarkonia

Quarkonia: assets & challenges

<u>Onia</u> \Rightarrow <u>clean channels</u> of <u>f-type</u> gluon TMDs

Initial-state color flow	\Rightarrow	[-, -]] gauge	link
--------------------------	---------------	--------	---------	------

$f_{1T}^{\perp g[-,-]} \qquad \checkmark$	
$f_{1T}^{\perp g [+,-]} \qquad \times$	

(overview)	P	[D. Boer	(2017)]
------------	---	----------	---------

Boer-Mulders	$e p ightarrow e' Q \overline{Q} , \ e p ightarrow e' j_1 j_2 ,$
$h_1^{\perp g[-,-]}(WW)$	\checkmark
$h_1^{\perp g [+,-]} (\mathrm{DP})$	×

$\eta_{c,b} \Rightarrow \text{LHC complementarity}, \text{TMD factorization}$

(factorization) 🔗 [M. García Echevarría (2019)] (pheno) [A. Bacchetta, F.G.C., J.-P. Lansberg, M. Radici, et al. (in progress)]

Gluon TMD PDFs & quarkonia

Precision TMD ⇔ production mechanism(s)

(production mechanisms, LHC) 🔗 [J.-P. Lansberg (2020)]

Color Evaporation Model

 $(Q\bar{Q})$ decorrelated from onium, semi-soft gluon emissions Overshoots data at large p₁

Color Singlet Model

 $(Q\bar{Q})$ to onium, no gluon emissions Fails at large p_T, improves at NLO

NRQCD and Color Octet

Higher Fock states, soft gluon emissions Problems at low p_T , fails on polarization

Quarkonia & Gluon TMDs: a path toward precision

TMD & shape functions

 $\underline{\mathsf{NRQCD}} \Rightarrow \mathrm{d}\sigma(|\mathcal{Q}\rangle) \propto \mathcal{H} \otimes \mathrm{LDME}$

 $|\mathcal{Q}\rangle = \mathcal{O}(1) |Q\bar{Q}[{}^{3}S_{1}^{(1)}]\rangle + \mathcal{O}(v) |Q\bar{Q}[{}^{3}P_{J}^{(8)}g]\rangle + \mathcal{O}(v^{2}) |Q\bar{Q}[{}^{1}S_{0}^{(8)}g]\rangle$ + $\mathcal{O}(v^2) |Q\bar{Q}[{}^3S_1^{(1,8)}gg]\rangle + \mathcal{O}(v^2) |Q\bar{Q}[{}^3D_I^{(1,8)}gg]\rangle + \dots$

S-wave quarkonium wave function

 $\mathsf{TMD} \Rightarrow \mathsf{from LDMEs}$ to shape functions (ShFs)

2 mechanisms: bound state + soft-gluon

(factorization) 🔗 [M. Garcia Echevarria (2019)] (SCET) Ø [S. Fleming, Y. Makris, T. Mehen (2020)] (unpol. J/ψ) \bigotimes [D. Boer, U. D'Alesio, F. Murgia, C. Pisano, P. Taels (2020)] (pol. J/ψ) \mathcal{O} [D. Boer, U. D'Alesio, L. Maxia, F. Murgia, C. Pisano, R. Sangem (2022)]

A path toward precision

Quarkonia & Gluon TMDs: a path toward precision

TMD & shape functions

NRQCD \Rightarrow d $\sigma(|Q\rangle) \propto \mathcal{H} \otimes \text{LDME}$

 $|\mathcal{Q}\rangle = \mathcal{O}(1) |Q\bar{Q}[{}^{3}S_{1}^{(1)}]\rangle + \mathcal{O}(v) |Q\bar{Q}[{}^{3}P_{J}^{(8)}g]\rangle + \mathcal{O}(v^{2}) |Q\bar{Q}[{}^{1}S_{0}^{(8)}g]\rangle$ + $\mathcal{O}(v^2) |Q\bar{Q}[{}^3S_1^{(1,8)}gg]\rangle + \mathcal{O}(v^2) |Q\bar{Q}[{}^3D_I^{(1,8)}gg]\rangle + \dots$

S-wave quarkonium wave function

TMD \Rightarrow from LDMEs to shape functions (ShFs)

2 mechanisms: bound state + soft-gluon

(factorization) 🔗 [M. Garcia Echevarria (2019)] (SCET) Ø [S. Fleming, Y. Makris, T. Mehen (2020)] (unpol. J/ψ) \bigotimes [D. Boer, U. D'Alesio, F. Murgia, C. Pisano, P. Taels (2020)] (pol. J/ψ) \mathcal{O} [D. Boer, U. D'Alesio, L. Maxia, F. Murgia, C. Pisano, R. Sangem (2022)]

A path toward precision

3D proton imaging: LHC & EIC

[A. Bacchetta, F.G. C., M. Radici, P. Taels (2020)]

Quarkonia & Gluon TMDs: a path toward precision

TMD & shape functions

NRQCD \Rightarrow d $\sigma(|Q\rangle) \propto \mathcal{H} \otimes \text{LDME}$

 $|\mathcal{Q}\rangle = \mathcal{O}(1) |Q\bar{Q}[{}^{3}S_{1}^{(1)}]\rangle + \mathcal{O}(v) |Q\bar{Q}[{}^{3}P_{J}^{(8)}g]\rangle + \mathcal{O}(v^{2}) |Q\bar{Q}[{}^{1}S_{0}^{(8)}g]\rangle$ + $\mathcal{O}(v^2) |Q\bar{Q}[{}^3S_1^{(1,8)}gg]\rangle + \mathcal{O}(v^2) |Q\bar{Q}[{}^3D_I^{(1,8)}gg]\rangle + \dots$

S-wave guarkonium wave function

TMD \Rightarrow from LDMEs to shape functions (ShFs)

2 mechanisms: bound state + soft-gluon

(factorization) 🔗 [M. Garcia Echevarria (2019)] (SCET) (S. Fleming, Y. Makris, T. Mehen (2020)] (unpol. J/ψ) \mathscr{O} [D. Boer, U. D'Alesio, F. Murgia, C. Pisano, P. Taels (2020)] $(\text{pol. } J/\psi) \otimes [D. Boer, U. D'Alesio, L. Maxia, F. Murgia, C. Pisano, R. Sangem (2022)]$

A path toward precision

3D proton imaging: LHC & EIC

[A. Bacchetta, F.G. C., M. Radici, P. Taels (2020)] [A. Bacchetta, F.G. C., M. Radici (to appear)]

