Spectator Tagging with **BONuS/BONuS12**

Supported under grant DE-FG02-96ER40960 by

Sebastian Kuhn Old Dominion University <u>نين</u> ODU Jefferson Lab

Overview

- Motivation
- (Barely) Offshell NUcleon Structure -> Spectator Tagging
- Minimizing Theoretical Uncertainties
- Low-Momentum Spectators in the Lab
- From 6 -> 12 (-> 22?) GeV
- EIC
- Conclusion

$$\begin{split} d\sigma_{\rm hadron} = & \sum_{f_1, f_2, i, j} \phi_{f_1} \otimes \hat{\sigma}_{\rm parton}^{f_1 f_2 \to ij} \otimes \phi_{f_2} \\ d\sigma_{\rm hadron} = & \sum_{f_1, f_2, i, j} \phi_{f_1} \otimes \hat{\sigma}_{\rm parton}^{f_1 f_2 \to ij} \otimes \phi_{f_2} \end{split}$$

- ⇒ Momentum Fraction x = p_+/P_+^{*}
- In DIS^{**}): $p_+/P_+ \approx \xi = (q_z v)/M \approx x_{Bj} = Q^2/2Mv$
- measure Probability: $f_1^i(x), i = u, d, s, ..., G$ ($f_1^u \equiv u(x)$ etc.)

Humongous data set on the proton; no DIS data on the neutron Neutron very desirable since $d_p \approx u_n \rightarrow flavor$ separation (isospin) Workaround: neutrons bound in nuclei

Drawback: obscured by binding effects (e.g., EMC effect)

**) DIS = "Deep Inelastic (Lepton) Scattering; here assuming target rest frame

^{*)} Advantage: Boost-independent along z

Why neutron data (esp. at high x)?

 Neutron and proton related via isospin rotation: replace u_p → d_n and u_n → d_p => using experiments with protons and neutrons one can extract information on u and d in the valence quark region:

high x: $\frac{F_{2n}}{F_{2p}} \approx \frac{1+4d/u}{4+d/u} \Rightarrow \frac{d}{u} \approx \frac{4F_{2n}/F_{2p}-1}{4-F_{2n}/F_{2p}}$

- EMC effect: We can only gain high-precision understanding if we can compare the NUCLEAR structure functions to a prediction from PROTON and NEUTRON structure functions and a microscopic model of the nucleus. (We need to get away from defining "EMC ratio = F2A*2/A*F2D")
- To correct nuclear data for EMC effect, must consider that it affects p and n (and/or u and d) differently in different (non-isoscalar) nuclei

High-x PDFs: Input for Collider experiments Ex.: High-Precision Measurement of the W Boson Mass with the CDF II Detector

Ashutosh Kotwal, Duke University Jefferson Lab Users Meeting June 14, 2022

Parton Distribution Functions

- Affect W boson kinematic line-shapes through acceptance cuts
- We use NNPDF3.1 as the default NNLO PDFs
- Use ensemble of 25 'uncertainty' PDFs => 3.9 MeV A. V. Kotwal, JLab Users Meeting, 6/14/22
- Central values from NNLO PDF sets CT18, MMHT2014 and NNPDF3.1 agree within 2.1 MeV of their midpoint
- As an additional check, central values from NLO PDF sets ABMP16, CJ15, MMHT2014 and NNPDF3.1 agree within 3 MeV of their midpoint

"For example, the cj15 set includes all Tevatron data on the W -charge asymmetry, as well as the lepton- charge asymmetry from W boson decays and quasi-free neutron scattering data from the Jefferson Lab BONuS experiment [95, 96] "
Science 95. N. Baillie, S. Tkachenko, J. Zhang, P. Bosted, S. Bültmann, M. E. Christy, H. Fenker, K. A.

95. N. Baillie, S. Tkachenko, J. Zhang, P. Bosted, S. Bültmann, M. E. Christy, H. Fenker, K. A. Griffioen, C. E. Keppel, S. E. Kuhn, W. Melnitchouk, V. Tvaskis, K. P. Adhikari, D. Measurement of the neutron F₂ structure function via spectator tagging with CLAS. *Phys. Rev. Lett.* **108**, 142001 (2012). <u>doi:10.1103/PhysRevLett.108.142001 Medline</u>

96. S. Tkachenko, N. Baillie, S. E. Kuhn,

D. Watts, X. Wei, L. B. Weinstein, M. H. Wood, L. Zana, I. Zonta, Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic ${}^{2}\text{H}(e,e'p_{s})X$ scattering with CLAS. *Phys. Rev. C* **89**, 045206 (2014).

CDF Collaboration *et al.*, *Science* **376**, 170–176 (2022)

8 April 2022

Supplementary Materials for A. V. Kotwal, JLab Users Meeting, 6/14/22 High-precision measurement of the *W* boson mass with the CDF II detector

CDF Collaboration

Corresponding author: A. V. Kotwal, ashutosh.kotwal@duke.edu

Science 376, 170 (2022) DOI: 10.1126/science.abk1781 A. v. Kotwat, JLad Users ivieeting, 0/14/22

Present Knowledge of $d/u \ (x \rightarrow 1)$

LRP 2015: Projected results from JLab@12 GeV

Marathon Results

Spectator Tagging – BONuS

BONuS12 withCLAS12

Overview

$e \text{-} d \rightarrow e \text{-} b X$

- CLAS12 Forward Detector:
- \rightarrow Superconducting Torus magnet.
- \rightarrow 6 independent sectors:

 \rightarrow HTCC

- \rightarrow 3 regions of DCs
- \rightarrow LTCC /RICH
- \rightarrow FTOF Counters
- \rightarrow PCAL and ECs

- Central Detector:

 \rightarrow Solenoid (3.5 - 4 T)

DC

BONuS12 RTPC

Beam Energy	Target	Spring 2020	Summer 2020
1 Pass Data	H2	81M	185M
	D2	37M	45M
	4He	19M	44M
	Empty	1M	22M
	Total	138M	296M
5 Pass Data	H2	151M	266M
	D2	2275M	2355M
	4He	77M	51M
	Empty	21M	45M
	Total	2524M	2717M

February – March 2020 | MEDCON6 | August-September 2020

BONuS12 RTPC

RTPC Assembly @ Hampton U. In Collaboration with ODU & JLab

GEM foil wrapping and gluing

Automated epoxy

application

inner surface

Reconstructed Tracks

BONuS12 – Quality Checks

BONuS12 – 10.4 GeV Data sample

Future: JLab at 20+ GeV?

- Halve distance to x = 1, higher Q²: Definite determination of asymptotic limit... *)
- ...AND to x = 0 => Study "valence" sea quarks (pion cloud)
- Increase Q^2 range for all $x \rightarrow$ DGLAP => Study "valence" gluon helicity
- Even for same x, Q²: higher energy -> higher rates -> better statistics
- (Super)Rosenbluth expand range in ε for fixed x, $Q^2 \Rightarrow R$, g_2 , A_2
- Extend flavor tagging with SIDIS to higher x, Q^2 :
- Issues: Still need to deal with nuclear uncertainties.

^{*)} Higher Q²: Suppress higher twist, study logarithmic resummation

Future: EIC

Tagging is easier:

- Acceptance down to zero spectator ٠ E_n
- *p*nomentum₁ n résotution in ttc.f
- transverse momentum & angle

$$P_{\parallel p} \approx \frac{P_D}{2} \left(1 + \frac{p_p^z}{m} \right)$$

Far-forward detectors

Magnetic spectrometer for protons, integrated in beam line, several subsystems: good acceptance and resolution

D

(a) e

 $M_{\rm D}$

 $P_{\parallel p} \approx_{(b) \gamma} \frac{1}{\gamma}$

 $p_{\rm D}$

ietitro bole

 $t = M_{s}$

neutro pole $t = M_N^2$

(b)

Zero-Degree Calorimeter for neutron

Advantage over fixed target: No target material, can detect spectators with rest frame momenta down to ~zero

Small dipole covering the range between the endcap and Roman pots

Conclusion

- Few-body nuclei (D and ³He/³H) continue to be "neutron targets of choice" needed to study valence structure of nucleons
- Interpretation of results complicated by off-shell effects, possible structure modifications and final state interaction...
- ...but we can also learn a lot about NN interaction and few-body nuclear structure by studying these effects (large kinematic coverage)
- New, more precise theoretical calculations are becoming available and can be tested experimentally
- Spectator tagging allows us to minimize binding effects or study them in detail
- Radial Time Projection Chambers have proven their value
- BONuS12 had successful Physics run -> stay tuned for F_{2n}, d/u, nDVCS...
- Lots more experiments at 12 GeV ALERT, TDIS, BAND, LAD
- Can be extended to 22 GeV
- Future of spectator tagging: EIC