Recent thoughts on the EMC theory

Gerald A. Miller, with D N Kim U. of Washington

In deep inelastic scattering from nuclei

$$
\frac{2}{A} \frac{\sigma_{A}}{\sigma_{D}} \neq 1
$$

PRC 106.055202 (2023)

Higinbotham, Miller, Hen, Rith CERN Courier 53N4('13)24

Effect is small, for x between 0.3 and 0.7 linear decrease with x

Ideas: ~1000 papers 3 ideas

- Proper treatimofell-fan Data effects: binding, Fermi motion_pintic- nuclear modification of internal nucleon/pion quark strusture
- Quark based- high momentum suppression implies larger confinement volume
- bound nucleon is larger than free one- a
a mean field effect- $p^{2}-M^{2}$ virtuality small
- multi-nucleon clusters - beyond the mean
(b) field $p^{2}-M^{2}$ virtuality large

Answer is most likely both- source of both is the same- underlying nucleon-nucleon interaction
EMC - "Everyone's Model is Cool (1985)" 210

Quark structure of nucleon

 two-component nucleon model: Blob-like config:BLC Point-like config: PLCPLC doesn't interact with nucleus
Free space

$$
H_{0}=\left[\begin{array}{cc}
E_{B} & V \\
V & E_{P}
\end{array}\right],|N\rangle=\frac{1}{\sqrt{1+\epsilon^{2}}}(|B\rangle+\epsilon|P\rangle)
$$

$$
|X\rangle=\frac{1}{\sqrt{1+\epsilon^{2}}}[-\epsilon|B\rangle+|P\rangle]
$$

Medium (M)

$$
\begin{aligned}
& H=\left[\begin{array}{cc}
E_{B}-|U| & V \\
V & E_{P}
\end{array}\right],|N\rangle_{M}=\frac{1}{\sqrt{1+\epsilon_{M}^{2}}}\left(|B\rangle+\epsilon_{M}|P\rangle\right) \\
& \epsilon_{M}=\epsilon\left(1-|U| /\left(2 \sqrt{\left(E_{P}-E_{B}\right)^{2}+4 V^{2}}\right)\right) \quad\left|\epsilon_{M}\right|<|\epsilon| \\
& \epsilon_{M}-\epsilon \propto U \propto \frac{p^{2}-M^{2}}{2 M} \text { virtuality }
\end{aligned}
$$

$$
P_{\mathrm{PLC}}^{M}=P_{\mathrm{PLC}}\left(1-\frac{2|U|}{\Gamma}\right) \quad \text { Structure functions of } \mathrm{B} \& \mathrm{P} \text { ? }
$$

Previous model not complete:
 Needs specific x-dependence for BLC \& PLC

Physics Reports 584 (2015) 1-105

Light-front holographic QCD and emerging confinement
LFQCD -good description of much data

```
Stanley J. Brodsky a,*, Guy F. de Téramond b
```

- Joshua Erlich ${ }^{\text {d }}$

Universality of Generalized Parton Distributions in Light-Front Holographic QCD
Guy F. de Téramond, ${ }^{1}$ Tianbo Liu, ${ }^{2,3}$ Raza Sabbir Sufian, ${ }^{2}$ Hans Günter Dosch, ${ }^{4}$ Stanley J. Brodsky, ${ }^{5}$ and Alexandre Deur ${ }^{2}$ PHYSICAL REVIEW LETTERS 120, 182001 (2018)

- 4 dimensional QFT equivalent to 5 dim. gravitational theory- space time is bent (Maldecena conjecture), holographic dual
- Bottom up procedure: construct four dimensional light front wave equation that has holographic dual
- Use holographic dual to compute electromagnetic form factors for systems of arbitrary spins, arbitrary number of particles
- Form factor is a Beta function, reparametrization invariance gives $F_{\tau}(t)=\int H_{\tau}(x, t) d x$ in a flexible form amenable to fitting data, τ is parton number

Free nucleon pdfs
 Relative weighting (ϵ) of $q_{3,4}$ determined by data

PRL 120, 182001 gets good fit 3 is PLC, 4 is BLC

If $\mathrm{N}=\mathrm{Z}$

$$
R=\frac{q_{M}}{q}=1+\delta \frac{1-f}{1+f}, \delta=\quad \frac{|U|}{\sqrt{\left(E_{P}-E_{B}\right)^{2}+4 V^{2}}}
$$

Publisned results PRC 106.055202

δ is large $|\mathrm{U}| \sim 100 \mathrm{MeV}$

Nucleon modified by nucleus

Expand in terms of free baryon

$$
\begin{gathered}
|N\rangle_{M}=\frac{1}{\sqrt{1+\epsilon_{M}^{2}}}\left[|B\rangle+\epsilon_{M}|P\rangle\right] \quad|N\rangle_{M}=\frac{1}{\sqrt{\left(1+\epsilon^{2}\right)\left(1+\epsilon_{M}^{2}\right)}}\left[\left(1+\epsilon_{M} \epsilon\right)|N\rangle+\left(\epsilon_{M}-\epsilon\right)|X\rangle\right] \\
P_{X} \approx \frac{\left(\epsilon-\epsilon_{M}\right)^{2}}{\left(1+\epsilon^{2}\right)^{2}} \rightarrow 1-2 \% \quad \epsilon_{M}-\epsilon \propto\left(p^{2}-M^{2}\right) / M^{2}, \text { small }
\end{gathered}
$$

Medium modifications are small

Summary

- Basic model is suppression of point like configurations, PLC
- Light front holographic QCD, based duality with a gravitational theory in 5 dimensions provides distribution functions (x) for PLC and BLC components
- x dependence accounts for EMC effect
- Values of parameter δ need to describe data indicate large virtuality is needed, so SRC explanation seems favored over mean field and Fermi motion

Spares follow

next topic Deep Inelastic Scattering from nuclei

$$
x=\frac{Q^{2}}{2 P \cdot q}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}=\frac{k^{+}}{P^{+}}
$$

The 1982 EMC effect involves deep inelastic scattering from nuclei

EMC= European Muon Collaboration

Nucleon from PDG

try Drell-Yan, Bickerstaff, Birse, Miller 84

$\frac{\sigma_{D Y}(\mathrm{Fe})}{\sigma_{D Y}\left({ }^{2} H\right)}$

Bertsch, Frankfurt, Strikman"crisis"

One thing I learned since ‘ 85

- Nucleon/pion model is not cool

Deep Inelastic scattering from nuclei-nucleons only free structure function

- Hugenholz van Hove

Binding causes no
EMC effect theorem nuclear stability implies (in rest frame) $\mathrm{P}^{+}=\mathrm{P}$ - $=\mathrm{M}_{\mathrm{A}}$

- $\mathrm{P}^{+}=\mathrm{A}\left(\mathrm{M}_{\mathrm{N}}-8 \mathrm{MeV}\right)$
- average nucleon \mathbf{k}^{+}
$\mathbf{k}^{+}=\mathrm{M}_{\mathrm{N}} \mathbf{- 8} \mathrm{MeV}$, Not much spread
$F_{2 A} / A \sim F_{2 N}$ no EMC effect
Momentum sum rulematrix element of energy momentum tensor

