Recent thoughts on the EMC theory (1982)

Gerald A. Miller, with D N Kim U. of Washington

In deep inelastic scattering from nuclei

 $\frac{2}{A}\frac{\sigma_A}{\sigma_D} \neq 1$

Effect is small, for x between 0.3 and 0.7 linear decrease with x

PRC 106.055202 (2023)

Higinbotham, Miller, Hen, Rith CERN Courier 53N4('13)24

Ideas: ~1000 papers 3 ideas

- Proper treatment of known effects: binding, Fermi motion, pionic- NO nuclear modification of internal nucleon/pion quark structure
- Quark based- high momentum suppression implies larger confinement volume
- bound nucleon is larger than free one- a mean field effect- $p^2 M^2$ virtuality small
- multi-nucleon clusters beyond the mean • field $p^2 - M^2$ virtuality large

Answer is most likely both- source of both is the same- underlying nucleon-nucleon interaction

EMC – "Everyone's Model is Cool (1985)" 2/10

	tructure of r	nucleon Frankfurt-	
		Schematic Strikman	
$_{_{7}} x$	PLC	two-component	
	$+\epsilon$ (•)	nucleon model:	
$\cdot x$		Blob-like config:BLC	
	gives high x	Point-like config: PLC	
x	q(x)	C doesn't interact with nucleus	
Free space	$H_0 = \begin{bmatrix} E_B & V \\ V & E_P \end{bmatrix}, N\rangle = \frac{1}{\sqrt{1+\epsilon^2}}(B\rangle + \epsilon P\rangle)$	$ X\rangle = \frac{1}{\sqrt{1+\epsilon^2}} [-\epsilon B\rangle + P\rangle]$	
Medium (M)	$H = \begin{bmatrix} E_B - U & V \\ V & E_P \end{bmatrix}, N\rangle_M = \frac{1}{\sqrt{1 + \epsilon_M^2}} (B\rangle + \epsilon_M$	$ P\rangle)$	
	$\epsilon_M = \epsilon \left(1 - U / (2\sqrt{(E_P - E_B)^2 + 4})^2 \right)$	$\overline{V^{2}}$) $ \epsilon_{M} < \epsilon $	
$\epsilon_M - \epsilon \propto U \propto \frac{p^2 - M^2}{2M}$ virtuality			
	$P_{\rm PLC}^{M} = P_{\rm PLC} \left(1 - \frac{2 U }{\sqrt{(E_P - E_B)^2 + 4V^2}} \right)$	Structure functions of B & P?	
Re	duced PLC probability \rightarrow reduced q(x)	4	

Previous model not complete: Needs specific x-dependence for BLC & PLC

ELSEVIER	Contents lists available at ScienceDirect Physics Reports journal homepage: www.elsevier.com/locate/physrep		
Light-front holographic QCD and emerging confinement Stanley J. Brodsky ^{a,*} , Guy F. de Téramond ^b , Hans Günter Dosch ^c , Joshua Erlich ^d		CrossMark	LFQCD -good description of much data
Universality	y of Generalized Parton Distributions in Light-Front Hologra	phic QCD	

Guy F. de Téramond,¹ Tianbo Liu,^{2,3} Raza Sabbir Sufian,² Hans Günter Dosch,⁴ Stanley J. Brodsky,⁵ and Alexandre Deur² PHYSICAL REVIEW LETTERS **120**, 182001 (2018)

- 4 dimensional QFT equivalent to 5 dim. gravitational theory- space time is bent (Maldecena conjecture), holographic dual
- Bottom up procedure: construct four dimensional light front wave equation that has holographic dual
- Use holographic dual to compute electromagnetic form factors for systems of arbitrary spins, arbitrary number of particles
- Form factor is a Beta function, reparametrization invariance gives $F_{\tau}(t) = \int H_{\tau}(x, t) dx$ in a flexible form amenable to fitting data, τ is parton number 5/10

Free nucleon pdfs Relative weighting (ϵ) of $q_{3,4}$ determined by data

6

Nucleon modified by nucleus

Expand in terms of free baryon

$$|N\rangle_{M} = \frac{1}{\sqrt{1 + \epsilon_{M}^{2}}} [|B\rangle + \epsilon_{M}|P\rangle] \qquad |N\rangle_{M} = \frac{1}{\sqrt{(1 + \epsilon^{2})(1 + \epsilon_{M}^{2})}} [(1 + \epsilon_{M}\epsilon)|N\rangle + (\epsilon_{M} - \epsilon)|X\rangle]$$

$$P_{X} \approx \frac{(\epsilon - \epsilon_{M})^{2}}{(1 + \epsilon^{2})^{2}} \rightarrow 1 - 2\% \qquad \epsilon_{M} - \epsilon \propto (p^{2} - M^{2})/M^{2}, \text{ small}$$

Medium modifications are small

Summary

- Basic model is suppression of point like configurations, PLC
- Light front holographic QCD, based duality with a gravitational theory in 5 dimensions provides distribution functions (x) for PLC and BLC components
- x dependence accounts for EMC effect
- Values of parameter δ need to describe data indicate large virtuality is needed, so SRC explanation seems favored over mean field and Fermi motion

Dmitriy (Dima) Kim

Spares follow

next topic Deep Inelastic Scattering from nuclei

$$x = \frac{Q^2}{2P \cdot q} = \frac{k^0 + k^3}{P^0 + P^3} = \frac{k^+}{P^+}$$

The 1982 EMC effect involves deep inelastic scattering from nuclei

EMC= European Muon Collaboration

One thing I learned since '85

Nucleon/pion model is not cool

Deep Inelastic scattering from nuclei-nucleons only free structure function

 Hugenholz van Hove theorem nuclear stability implies (in rest frame) P+=P-=M_A

average nucleon k⁺
 k⁺=M_N-8 MeV, Not much spread

F_{2A}/A~F_{2N} no EMC effect

Momentum sum rulematrix element of energy momentum tensor