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Deep Inelastic Scattering

3M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", 
NIM-A 1025 (2022): 166164

DIS is governed by the four-momentum transfer squared of the exchanged boson Q2, the inelasticity y, and 
the Bjorken scaling variable x. 

These kinematic variables are related via the relation Q2 = sxy, where s is the square of the 
center-of-mass energy.

Born diagram

higher-order QED 
corrections at the 

lepton vertex

Initial State Radiation

Final State Radiation



Previous works
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● Conservation of momentum and energy 
over constrain the DIS kinematics and 
leads to a freedom to calculate x, Q2, y 
from measured quantities 

● Each method has advantages and 
disadvantages, and no single approach 
is optimal over the entire phase space. 
Each method exhibits different 
sensitivity to QED radiative effects  

Summary of basic reconstruction methods

● Once (real) higher-order QED effects are 
considered, the various methods yield 
different results and the calculated 
quantities for Q2, y and x are not 
representative for the γ/Z + p scattering 
process at the hadronic vertex.

M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", 
NIM-A 1025 (2022): 166164



Deeply Learning DIS

5M. Diefenthaler, A. Farhat, A. Verbytskyi, Y Xu. "Deeply learning deep inelastic scattering kinematics." EPJ C 82.11 (2022): 1064.

DIS fundamental 
process @EIC

(Born level)

● Use of DNN to reconstruct the kinematic observable x, Q2, y in the study of 
neutral current DIS events at ZEUS and H1 experiments at HERA.

● The performance compared to electron, Jacquet-Blondel and the 
double-angle methods using data-sets independent of training

● Compared to the classical reconstruction methods, the DNN-based 
approach enables significant improvements in the resolution of Q2 and x

DIS beyond the Born approximation has a complicated 
structure which involve QCD and QED corrections

Example in one specific bin 



Description of input features
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● Define variables to characterize the strength of QED radiation

M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", 
NIM-A 1025 (2022): 166164

+ additional 8 features7 features to help indicate QED radiation in the event

Tot. 15 input features 



Epistemic vs Aleatoric
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● Epistemic Uncertainty: This type of uncertainty 
arises from a lack of knowledge which is 
reflected in the effectiveness of the model in 
describing the data. It can be reduced as more 
information or data becomes available, and by 
improving the model. It can be affected by 
inaccuracy. 

● Aleatoric Uncertainty: This uncertainty is due to 
inherent variability or randomness in a process 
or system and cannot be reduced by collecting 
more data. For example, even if we know the 
probability of getting heads when flipping a fair 
coin, the outcome of each individual flip is still 
uncertain.

Abdar, Moloud, et al. "A review of uncertainty quantification in 
deep learning: Techniques, applications and challenges." 
Information fusion 76 (2021): 243-297.



Network
BayesFlow-DIS
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epistemic aleatoric

DIS

[1] C Louizos, M Welling International Conference on Machine Learning; arXiv:1703.01961 Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
[2] A. Kendall and Y. Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Adv. Neural Inf. Process. 30 (2017).



Aleatoric-RMS comparison
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Aleatoric-RMS comparison
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Aleatoric-RMS comparison



Comparison between DNN and BNN
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● The RMS (MNF) roughly coincide with that of DNN as seen previously 

● The RMS (DNN) for x and y is larger at low y given the distributions are broader  

● The epistemic is systematically smaller than aleatoric component. 

● At large y, for x and y the total uncertainty (epistemic+aleatoric) close to RMS of DNN

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) — 



All methods compared
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● At low y, the RMS are typically 
larger due to “broader” 
distributions  

● DNN and MNF have smaller 
RMS over the whole y range 
compared to other methods (this 
was also the finding of NIM-A 
1025 (2022): 166164) — “our 
method outperforms other 
methods over a wide kinematics 
range”

● “The RMS resolution for y and x 
increase at lower y, even for the 
DNN reconstruction. … This 
results … may be attributed to 
further acceptance, noise, or 
resolution effects that 
deteriorates the measurement of 
the HFS” 

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) — 



Epistemic vs True Inaccuracy
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● The plots show that the epistemic uncertainty is larger when the true inaccuracy is larger. 



Physics-informed term
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● The plots report the true inaccuracy, and the weighted epistemic uncertainty, which is 
larger the larger the true inaccuracy is 

● The physics-informed term (blue) contributes to decrease the true inaccuracy.  

physics-informed



Leveraging event-level information
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● Removing events with large 
relative event-level 
uncertainty (with respect to 
the network prediction) 
improve the ratio to truth 
and reduce inaccuracy 

● Notice these cuts do not 
use any information at the 
ground truth level

—  N.b.: events with at least one among x,Q2, y
 with relative uncertainty larger than a threshold are removed — 

(underway)



Leveraging event-level information
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Negligible impact on Q2 and y, shown for completeness 
(underway)



Conclusions
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● Bayesian Deep Learning and Uncertainty Quantification: The approach enables detailed 
uncertainty quantification, encompassing both aleatoric and epistemic uncertainties, at the individual 
physics event level. 

● Decision-making Advantage: This level of detailed uncertainty information is instrumental in 
decision-making processes, such as event filtering, enabling minimization of true inaccuracies 
without the need for accessing ground truth. 

● Application to DIS Simulation & EIC: Our findings are corroborated by results from a complete 
DIS simulation using the H1 detector at HERA, indicating that the same methodology is transferable 
for applications in EIC, including data quality monitoring and anomaly detection. 

● Network Training and Complexity: A successful strategy involves initial training of a DNN to 
achieve satisfactory performance with minimal complexity. The architecture for our MNF and DNN 
remains consistent in terms of layer sizes. 

● Speed and Efficiency: The proposed methodology showcases remarkable speed, managing 
10,000 samples per event in just 22 milliseconds (RTX 3090).

A comprehensive paper detailing these findings 
(validation studies are underway) is currently under development.



AI4EIC Workshop (CUA, Washington,D.C., Nov 28-Dec1, 2023)
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https://indico.bnl.gov/event/AI4EIC2023

https://eic.ai

AI/ML for ePIC and Beyond

Calibration, Monitoring, and 
Experimental Control in 
Streaming 

AI/ML for Accelerators

AI/ML for Data Analysis and 
Theory

Foundation Models and Trends in 
Data Science

AI/ML in Production, Distributed 
ML

Dec 1: Hackathon

Nov 28 - Nov 30

Abstract submission open until October 6!

Proceedings will be published in the Journal of 
Instrumentation.

Can help spotlight the valuable 
discussions that occur at this event

https://indico.bnl.gov/event/AI4EIC2023
https://eic.ai

