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H1 at HERA
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• H1 Detector at the positron-proton collider, HERA. Hosted in Hamburg Germany 
• Major goal was to study internal structure of the proton through deep inelastic scattering
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Lepton Jet Asymmetry
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⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥

⃗P⊥ = ( ⃗kℓ⊥ − ⃗kJ⊥) / 2

cos(ϕ) = ( ⃗q⊥ ⋅ ⃗P⊥ ) / | ⃗q⊥ | | ⃗P⊥ |

ϕ = acos[( ⃗q⊥ ⋅ ⃗P⊥ ) / | ⃗q⊥ | | ⃗P⊥ | ]

Key Ingredients:

Momentum conservation:

Dijet Example

, and therefore  will tend to point in the direction of the jet 
Darker colors indicate probability of gluon emission

ki q⊥

⃗kl⊥

⃗kJ⊥

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥
⃗P ⊥ = ( ⃗kl,⊥ − ⃗kJ⊥)/2 ϕ

•  = Total transverse 
momentum 

•   = Transverse momentum 
difference 

•  = Angle between  and 

q⊥

P⊥

ϕ q⊥ P⊥
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Lepton Jet Measurement
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• Total transverse momentum of the outgoing system , 
is typically small but nonzero 
- Significant interest in studying transverse momentum dependent (TMD) parton 

distributions 

• Imbalance can come from soft gluon radiation

- soft gluon with momentum 

- unrelated to TMDs or intrinsic transverse momentum of target gluons


• Depending on kinematics, soft gluon radiation can dominate

- Radiative corrections enhanced approximately as  

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥

k⊥g

(αs ln2 P2
⊥/q2

⊥)n

⃗kl⊥

⃗kJ⊥

− ⃗q⊥ = ⃗ksg⊥
⃗P ⊥ = ( ⃗kl,⊥ − ⃗kJ⊥)/2 ϕ

P⊥ ≫ q⊥
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H1 Data
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• Same data / selection / unfolding as arXiv:2108.12376

- “Measurement of lepton-jet correlation in deep-inelastic scattering with the H1 

detector using machine learning for unfolding”


• H1 Data from 2006 and 2007 periods at 130 

- Positron-proton collisions


• Fiducial Cuts:

- 

- 

-

pb−1

0.2 < y < 0.7
Q2 > 150 GeV2

pjet
T > 10 GeV

- 

- 

- 


-

−1 < ηlab < 2.5
kT, R = 1.0
q⊥/Q < 0.25
q⊥/pT,jet < 0.3

Cut on  to satisfy : q⊥/pT,jet P⊥ ≫ q⊥
pT,jet ≈ P⊥/2

Taking the leading jet

s = 320 GeV

https://arxiv.org/abs/2108.12376
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Detector-level MC
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Step 1: 
Reweight Sim. to Data

Step 2: 
Reweight Gen.

RAPGAP
DJANGOH

PYTHIA

GEANT

Jetp

e e

Jetp

e e

Geant3

Rapgap, 
Djangoh, 

…

MultiFold
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2 step iterative approach

• Simulated events after 

detector interaction are re-
weighted to match the data


• Create a “new simulation” 
by transforming weights to 
a proper function of the 
generated events


Machine learning is used to 
approximate 2 likelihood 
functions:

Reco MC to Data 
reweighting

Previous and new Gen 
reweighting
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MultiFold Overview
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• Multi-dimensional, un-binned 
unfolding result

- Lepton-Proton momentum imbalance

- PhysRevLett.128.132002


• Jet constituent-level unfolding

- Un-binned Deep Learning unfolding of Jet 

Substructure

- arXiv 2303.13620


• Recycling of unfolded event weights

- And measure moments
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order (NNLO) accuracy in QCD (up to O(↵2
s)) was obtained with the Poldis code [121, 122], which is based on the

Projection to Born Method [123]. These calculations are multiplied by hadronization corrections that are obtained with
Pythia 8.3 [124, 125] using its default set of parameters. These corrections are smaller than 10% for most kinematic
intervals and are consistent with corrections derived by an alternative generator, Herwig 7.2 [126, 127], using its
default parameters. The uncertainty of the calculations is given by the variation the factorization and renormalization
scale Q2 by a factor of two [121, 122] as well as NLOPDF4LHC15 variations [128].

The TMD calculation uses the framework developed in Refs. [33, 34] using the same jet radius and algorithm used in
this work3. The inputs are TMD PDFs and soft functions derived in Ref. [129], which were extracted from an analysis
of semi-inclusive DIS and Drell-Yan data. The calculation is performed at the next-to-leading logarithmic accuracy.
This calculation is performed within TMD factorization and no matching to the high qT region is included, where
the TMD approach is expected to be inaccurate. In contrast to pQCD calculations, the TMD calculations do not
require non-perturbative corrections, because such effects are already included. Calculations with the TMD framework
are available for the TMD sensitive cross sections, which are qjet

T /Q and ��jet. Uncertainties are not yet available
for the TMD predictions4. Additional TMD-based calculations are provided by the MC generator Cascade [131],
using matrix elements from KaTie [132] and parton branching TMD PDFs [133–135]. A first setup integrates to
HERAPDF2.0 [136] and a second setup uses angular ordering and pT as the renormalization scale [137, 138].
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Figure 2. Measured cross sections, normalized to the inclusive jet production cross section, as a function of the jet transverse
momentum (top left) and jet pseudorapidity (top right), lepton-jet momentum balance (qjet

T
/Q) (lower left), and lepton-jet

azimuthal angle correlation (��jet) (lower right). Predictions obtained with the pQCD (corrected by hadronization effects,
“NP”) are shown as well. Predictions obtained with the TMD framework are shown for the qjet

T
/Q and ��jet cross sections. At

the bottom, the ratio between predictions and the data are shown. The gray bands represent the total systematic uncertainty
of the measurement; the bars represent the statistical uncertainty of the measurement, which is typically smaller than the
marker size. The error bar on the NNLO calculation represents scale, PDF, and hadronization uncertainties. The statistical
uncertainties on the MC predictions are smaller than the markers.

Results. The unfolded data and comparisons to predictions are presented in Fig. 2. The pjetT and ⌘jetlab cross sections
are described within uncertainties by the NNLO calculation. Note that while the QED corrections are mostly small,

3 This differs from the original paper [33] using the anti-kT algorithm. The difference is power suppressed at the accuracy of the calculation.
4 The scale variation procedure that is standard in the collinear framework does not translate easily to the TMD framework [130].

Multifold previously used to unfold:  
pe

x , pe
y , pe

z , pjet
T , ηjet, ϕjet, Δϕjet, qjet

T /Qpjet
T , ηjet, ϕjetpe

x , pe
y

http://Unbinned%20Deep%20Learning%20Jet%20Substructure%20Measurement%20in%20High%20Q2%20ep%20collisions%20at%20HERA
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H1 Unfolded Data
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• Leading moment is , expected in lepton-jet events

• All harmonics approach 0.0 at higher , may compromise 

• Rapgap and Django, tuned to HERA II data, exhibit good agreement

•Note small absolute value of central values

⟨ cos(ϕ) ⟩
q⊥ P⊥ ≫ q⊥
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Even more interesting at EIC!

9

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥
⃗P⊥ = ( ⃗kℓ⊥ − ⃗kJ⊥) / 2

arXiv: 2211.01647

R=0.4

• Asymmetry may be sensitive to Parton saturation effects (EIC) 
•GBW — Three parameter model fit to HERA data, input to  

•Calculation in TMD framework with CT18A PDF

•Recalculated to match HERA kinematics, with jet R=1.0

f(b, x)

https://arxiv.org/abs/2211.01647
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H1 Unfolded Data
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• Three harmonics of the azimuthal angular asymmetry between the lepton 
and leading jet as a function of .   
• Predictions from multiple simulations as well as a pQCD calculation are 

shown for comparison. 
• PYTHIA, not tuned to HERA II, performs inconsistently

q⊥
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Conclusions
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• Promising measurement probing soft gluon radiation

- Test of pQCD calculations

- Important reference for lepton-jet DIS measurements

- Reasonable agreement with Rapgap + Djangoh


• MultiFold

- First recycling of unfolded event weights! Reusability is key

- measurement of moments, requiring the unbinned unfolding! 

• Outlook:

- Because of H1’s data + simulation conservation, we can use recent insights 

and advances in methodology to analyze ~15 year old data

- Important Implications for studies at EIC, both in observable and methods
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ML-Assisted Detector 
Optimization
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Goal:  
best experimental design suited for the 

best detector reconstruction



Fernando TA 9/24/23Fernando TA 9/24/23

Forward Hadronic Calorimeter
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Case Study: Optimization of forward HCAL in ePIC detector

Calorimeter Insert

HCAL

ECAL

● Simulated Data (Information in Wiki)
○ Particle: e-, 𝞹+, neutrons
○ Polar angle:  𝝷 = 17 deg, 10< 𝝷 < 30 deg
○ Calorimeter Configuration: HCAL  only, 

ECAL in front of HCAL
○ Continuous and discrete in energy

● Saved models are found in Wiki with dataset 
used

p e−

• The incoming proton/ion has a significantly larger kinetic energy 
than the incoming electron.

• If we want to measure jets, we need a granular, forward calorimeter


- Forward region, 1.2 < η < 3.5 

• Deep Sets and GNNs for pion energy regression

•G4 approximation of ePIC

HCal

ECal

275 GeV 18 GeV
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3

FIG. 1. Examples of 4 typical reconstructed 3D shower shapes in HCal for ⇡+
with the MIP cut described in text. The color

code represents deposited energy in term of EMIP .

where SFhcal = 2.2%, SFecal = 3.0% are the sampling fraction for HCal and ECal respectively. Sampling fractions82

are computed using the electron at fixed energy (40 GeV) as given by Equation 283

Sampling Fraction =

 Pcell Ei

ETruth

!

at 40 GeV electron

. (2)

We have characterize the performance of hadronic calorimeter by energy scale and resolution. Energy scale is the84

mean obtained through a Gaussian fit to Ereco/ETruth distribution. While resolution is quoted as the ratio of sigma85

to mean from Gaussian fit to Ereco/ETruth distribution. Reported resolution are corrected by the energy scale.86

The cell hits are represented via point cloud representation. The AI-based model employs a graphical neural network87

architecture that operates without incorporating edge information, known as a deepset. In this setup, the nodes in the88

network are represented by the cell information, denoted as E, X, Y, and Z. Additionally, the global nodes are derived89

from the cluster sum of E. To optimize the model, Mean Squared Error (MSE) is chosen as the loss function, while90

the activation function used is the Rectified Linear Unit (RELU). The network is designed with a latent size of 6491

and consists of 4 layers. To facilitate e↵ective learning, a learning rate of 1e-3 is employed. All the hyperparameters92

are optimized hence by combining these elements, the model aims to e�ciently capture the underlying patterns and93

relationships in the given data.94

With 4 input features (”4D” cell hits) the input training matrix (node features) for every event can be represented95

as:96
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Detector Simulation and Reconstruction

14

• Geant4 Simulation of single  showers



•  Cell Hits per shower, point clouds 
• Establish a model to predict  given cell information

• Condition model on position of longitudinal segmentation

π+

1 < PGen. < 125 GeV/c
𝒪100 − 1000

PGen.

3

FIG. 1. Examples of 4 typical reconstructed 3D shower shapes in HCal for ⇡+
with the MIP cut described in text. The color

code represents deposited energy in term of EMIP .

where SFhcal = 2.2%, SFecal = 3.0% are the sampling fraction for HCal and ECal respectively. Sampling fractions82

are computed using the electron at fixed energy (40 GeV) as given by Equation 283

Sampling Fraction =

 Pcell Ei

ETruth
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at 40 GeV electron

. (2)

We have characterize the performance of hadronic calorimeter by energy scale and resolution. Energy scale is the84

mean obtained through a Gaussian fit to Ereco/ETruth distribution. While resolution is quoted as the ratio of sigma85

to mean from Gaussian fit to Ereco/ETruth distribution. Reported resolution are corrected by the energy scale.86

The cell hits are represented via point cloud representation. The AI-based model employs a graphical neural network87

architecture that operates without incorporating edge information, known as a deepset. In this setup, the nodes in the88

network are represented by the cell information, denoted as E, X, Y, and Z. Additionally, the global nodes are derived89

from the cluster sum of E. To optimize the model, Mean Squared Error (MSE) is chosen as the loss function, while90

the activation function used is the Rectified Linear Unit (RELU). The network is designed with a latent size of 6491

and consists of 4 layers. To facilitate e↵ective learning, a learning rate of 1e-3 is employed. All the hyperparameters92

are optimized hence by combining these elements, the model aims to e�ciently capture the underlying patterns and93

relationships in the given data.94

With 4 input features (”4D” cell hits) the input training matrix (node features) for every event can be represented95
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Deep Sets
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Goal: 
 Energy 

Regression
π+

{E 
X 
Y 
Z}Xi = ∈ ℝ4

X1

X2

Xn

..
.

nodes (cells)

 S
ho

w
er

 w
ith

 n
 c

el
ls

π+

C
lu

st
er

 E
ne

rg
y

Model uses energy and position information for energy regression

1 2 3

1. Latent 
2. Aggregation 
3. Final Output
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FIG. 4. Energy resolution (left) and energy scale (right) of calorimeter with di↵erent number of z-sections along the longitudinal
direction. The bottom panel of resolution plot shows the square root of di↵erence in squares of resolution of 1 z-section and
the given z-sections.

FIG. 5. Comparison of regression model performance with di↵erent input features. Energy resolution (left) energy scale (right).
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Energy Regression:  
Feature Dimension

•Using DeepSets for regression, biggest improvement is 
the inclusion of cell-Z information

• Additional transverse information (2D 4D) less impactful

• Energy scale within %2 of truth

→
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3

FIG. 1. Examples of 4 typical reconstructed 3D shower shapes in HCal for ⇡+
with the MIP cut described in text. The color

code represents deposited energy in term of EMIP .

where SFhcal = 2.2%, SFecal = 3.0% are the sampling fraction for HCal and ECal respectively. Sampling fractions82

are computed using the electron at fixed energy (40 GeV) as given by Equation 283

Sampling Fraction =

 Pcell Ei

ETruth

!

at 40 GeV electron

. (2)

We have characterize the performance of hadronic calorimeter by energy scale and resolution. Energy scale is the84

mean obtained through a Gaussian fit to Ereco/ETruth distribution. While resolution is quoted as the ratio of sigma85

to mean from Gaussian fit to Ereco/ETruth distribution. Reported resolution are corrected by the energy scale.86

The cell hits are represented via point cloud representation. The AI-based model employs a graphical neural network87

architecture that operates without incorporating edge information, known as a deepset. In this setup, the nodes in the88

network are represented by the cell information, denoted as E, X, Y, and Z. Additionally, the global nodes are derived89

from the cluster sum of E. To optimize the model, Mean Squared Error (MSE) is chosen as the loss function, while90

the activation function used is the Rectified Linear Unit (RELU). The network is designed with a latent size of 6491

and consists of 4 layers. To facilitate e↵ective learning, a learning rate of 1e-3 is employed. All the hyperparameters92

are optimized hence by combining these elements, the model aims to e�ciently capture the underlying patterns and93

relationships in the given data.94

With 4 input features (”4D” cell hits) the input training matrix (node features) for every event can be represented95

as:96

2
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Data Processing for Models

17

• Full point cloud readout is unrealistic for final detector

• Segment the calorimeter N=1-64 layers

• Run regression, identifying optimal longitudinal configuration

↔
↔

4-Layer Configuration
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FIG. 4. Energy resolution (left) and energy scale (right) of calorimeter with di↵erent number of z-sections along the longitudinal
direction. The bottom panel of resolution plot shows the square root of di↵erence in squares of resolution of 1 z-section and
the given z-sections.

FIG. 5. Comparison of regression model performance with di↵erent input features. Energy resolution (left) energy scale (right).
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Energy Regression: 
 Number of Layers

• 1-Layer configuration w/ Deepsets outperforms baseline

• Intuitive increase in performance as  increases


• Scale is insensitive 
Nz

Nz
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Conclusions and Outlooks

19

• Longitudinal cell information yield greatest 
improvement. Resolution less sensitive to 
transverse segmentation


• Paper out this week!

- The Optimal use of Segmentation for Sampling 

Calorimeters 

• Next Step: Model conditioned directly on 
detector configuration

σE = f(z1, z2, ⃗x)
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END… END

20
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Backup

21
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σE = f(z1, z2, ⃗x)

23

We have a differentiable function for energy resolution 

Layer positon [mm] Layer positon [mm]

 GeV/cPGen. < 10.0  GeV/cPGen. > 50.0
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Deep Sets

24

1. Transform inputs into some latent space

2. Destroy the ordering information in the latent space (+, )

3. Transform from the latent space to the final output

μ

Permutation Invariant 
Works well with point clouds 

A GNN without edges arXiv: 1703.06114
arXiv:1810.05165

24

1 2 3

https://arxiv.org/abs/1703.06114?ref=inference.vc
https://arxiv.org/abs/1810.05165
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FIG. 4. Energy resolution (left) and energy scale (right) of calorimeter with di↵erent number of z-sections along the longitudinal
direction. The bottom panel of resolution plot shows the square root of di↵erence in squares of resolution of 1 z-section and
the given z-sections.

FIG. 5. Comparison of regression model performance with di↵erent input features. Energy resolution (left) energy scale (right).
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Energy Regression Results

• Geant4 Simulation of single  showers

• Condition model on position of longitudinal 

segmentation

π+
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Forward HCal

26

•High-granularity iron-scintillator 
calorimeter 


•Forward region, 1.2 < η < 3.5 


•Sampling calorimeter comprised of 0.3 cm 
scintillator tiles sandwiched between 2.0 
cm steel plates

Optimization Possibility in ePIC
- Technology in ePIC HCAL and Insert uses SiPM-on-tile approach.
- Number of longitudinal sections and their position can be easily 

changed in practice (summing SiPM pulses) before readout. 
- Default is 7 equidistant z-sections regardless of radius. 
- Energy density varies with radius, so this is likely non-optimal

HCAL and Insert:
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Observable Motivation

27

1. Probes soft gluon radiation 

• Soft gluon radiation can be the primary contribution to asymmetry for 

certain kinematics

• Asymmetry is Perturbative, test pQCD calculations


2. May represent a vital reference for other signals, in 
particular TMD PDF measurements


- Large interest in Lepton-Jet Correlations to probe TMDs

- In TMD factorization framework, one can factorize contributions from 

transverse momentum dependent (TMD) PDFs and Soft gluon radiation


3. Observable is sensitive to gluon saturation phenomena, 
potentially measurable at the EIC

S(g)

 for n = 1, 2, 3⟨cos(nϕ)⟩
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H1 Unfolded Data

28

•Note: Calculations done  GeV 
•Differences could be due to sample bin average within the fiducial cuts 
•CT18A is also a TMD calculation, disagreement could also be in 

kinematics constraints

q⊥ ≤ 3.0
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Two Sets of Calculations (Compare 2nd)

29

⃗q⊥ = ⃗kℓ⊥ + ⃗kJ⊥⃗P⊥ = ( ⃗kℓ⊥ − ⃗kJ⊥) / 2

R=1.0

 =140 GeV,  = 20 GeV, 
 = 1.5,  = 25 GeV 

Radiative corrections 
enhanced  

s P⊥
yl Q

∝ (αs ln2 P2
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⊥)n

4

f(n) ' ln(b20/n
2) with b0 = 2e��E (�E is the Euler con-

stant). Also note that g(nR) ⇡ n2R2/4 when nR ⌧ 1,
while g(nR) ⇡ ln(n2R2/b20) in the limit nR � 1. This
indicates that cn vanishes when nR � 1.

When R is large ⇠ O(1), we should return to (7). The
Fourier coe�cients can be evaluated numerically as fol-
lows (see (A3))
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where y± = ±
p
R2 � �2. For example, for R = 1, we

have c0 ' �0.25, c1 = 0.78 and c2 = �0.30. As shown in
Fig. 3, cn decreases approximately as ln 1/R2 for small n
values, while oscillations around zero start to appear for
large-n coe�cients.

We now extend the above one-loop results to all orders
in the TMD framework by resumming the double and
single logarithms in Q2/q2?. This is appropriately carried
out in the Fourier transformed b?-space. The resummed
azimuthal averaged cross section reads [33],
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where µb ⌘ b0/b? with b0 = 2e��E and �E the Euler
constant. Here and in the following, we neglect the high
order corrections to the hard factor in the resummation
formulas. The Sudakov form factor is defined as
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To derive the resummation result for the azimuthal angle
dependent di↵erential cross section, we first compute the
Fourier transfer of the soft gluon radiation contribution
at one-loop order from Eq. (4), by applying the Jacobi-
Anger expansion,

eiz cos(�) = J0(z) + 2
1X
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and the integration formula,
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Importantly, the q0?-integral gives a constant although
originally in momentum space the angular dependent

cos�
cos2�
cos3�

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

qT (GeV)
As
ym
m
et
rie
s

cos�
cos2�
cos3�

0 1 2 3 4 5 6
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

qT (GeV)

As
ym
m
et
rie
s

FIG. 4. Azimuthal asymmetries in lepton-jet production in
ep collisions at

p
s=140 GeV, P? = 20 GeV, yl = 1.5, Q = 25

GeV, g⇤ =0.1GeV with di↵erent jet cone sizes R = 0.4 (top
panel) and R = 1.0 (bottom panel).

terms are singular 1/q2?, see, Eq. (4). At higher orders
there are double logarithmic corrections but they can be
resummed together with the angular-independent term
[34, 35]. After this resummation, we arrive at

d5�ep!e0qX

dy`d2P?d2q?
=

X

n=1

2 cos(n�)

Z
b?db?
(2⇡)

Jn(|q?||b?|)

⇥

X

q

�eq
0 xqfq(xq, µb)

CF↵scn
n⇡

⇥e� Sudeq(b?,P?,R) . (17)

An important feature of the above result is that the
Fourier coe�cients scale as

hcos(n�)i / qn? , (18)

in the small-q? region [35].
To evaluate (17), following Ref. [90] we employ the so-

called b⇤-prescription to suppress the large-b? region and
introduce non-perturbative form factors associated with
the initial and final state radiations,

Sudeq(b?) ! Sudeq(b⇤)+SudqNP(b?)+SudjetNP(b?) , (19)

where b⇤ = b?/
p

1 + b2?/b
2
max with bmax = 1.5 GeV�1.

The form factor associated with the incoming quark
is [91, 92]

SudqNP(b?) = 0.106 b2? + 0.42 ln(Q/Q0) ln(b?/b⇤) , (20)

arXiv:2106.05307
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FIG. 4. Azimuthal asymmetries in lepton-jet production in
ep collisions at

p
s=140 GeV, P? = 20 GeV, yl = 1.5, Q = 25

GeV, g⇤ =0.1GeV with di↵erent jet cone sizes R = 0.4 (top
panel) and R = 1.0 (bottom panel).

terms are singular 1/q2?, see, Eq. (4). At higher orders
there are double logarithmic corrections but they can be
resummed together with the angular-independent term
[34, 35]. After this resummation, we arrive at
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An important feature of the above result is that the
Fourier coe�cients scale as

hcos(n�)i / qn? , (18)

in the small-q? region [35].
To evaluate (17), following Ref. [90] we employ the so-

called b⇤-prescription to suppress the large-b? region and
introduce non-perturbative form factors associated with
the initial and final state radiations,

Sudeq(b?) ! Sudeq(b⇤)+SudqNP(b?)+SudjetNP(b?) , (19)

where b⇤ = b?/
p

1 + b2?/b
2
max with bmax = 1.5 GeV�1.

The form factor associated with the incoming quark
is [91, 92]

SudqNP(b?) = 0.106 b2? + 0.42 ln(Q/Q0) ln(b?/b⇤) , (20)

⟨n cos(nϕ)⟩ is plotted

arXiv: 2211.01647

Harmonics of saturation with inputs from GBW model and CT18A PDF 

R=0.4

Soft Gluon Resummation 

https://arxiv.org/abs/2211.01647
https://arxiv.org/pdf/hep-ph/9807513.pdf
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Investigation of Model Bias vs.  q⊥ [GeV]

30

• Leading uncertainty is model bias in the unfolding for  and 

• Difference in the result when unfolding using RAPGAP and DJANGO

• Reporting Abs. Errors; central values are very close to 0.0

• The Total Uncertainty is quite stable between harmonics

cos(2ϕ) cos(3ϕ)
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Backup Further Background

31

• Machine learning (OmniFold) is used to perform an 8-dimensional, 
unbinned unfolding. 


• Use the 8-dimensional result to explore the  dependence and any other 
observables that can be computed from the electron-jet kinematics

Q2

Extracted from the same phase-space as Yao’s analysis, 
but reporting a different observable
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1. ωn(m) = νpush
n−1 (m)L[(1,Data), (νpush

n−1 , Sim.)](m)

• Detector level simulation is weighted to match the data


•   approximated by  classifier trained 
to distinguish the Data and Sim.
L[(1,Data), (νpush

n−1 , Sim.)](m)

• Transform weights to a proper function of the generated events to 
create a new simulation


•  approximated by classifier 
trained to distinguish Gen. with pulled weights from Gen. using

 

L[(ωpull
n , Gen.), (νn−1, Gen.)](t)

weightsold / weightsnew

2. νn(t) = ν0(t)L[(ωpull
n , Gen.), (ν0, Gen.)](t)

Each iteration of step 2 learns the correction from the original  weights 
Advantage: Easier implementation, no need to store previous  model 

Disadvantage: Learning correction from  is more computationally expensive

ν0
νn

ν0

OmniFold

νn−1(t) = νpush
n (m)

ωpull
n (t) = ωn(m)
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Systematic Uncertainties

33

• Model Dependance:

- The bias of the unfolding procedure is determined by taking the difference in the 

result when unfolding using RAPGAP and DJANGO

- The two generators have different underlying physics, thus providing a realistic 

evaluation of the procedure bias


• QED Radiation Corrections

- Difference of correction between RAPGAP and DJANGO

- Take RAPGAP with and without QED corrections

- Take DJANGO with and without QED corrections


• Systematic uncertainties are determined by varying an aspect of 
the simulation and repeating the unfolding

- These values detail the magnitude of variation:

- HFS-object energy scale: 

- HFS-object azimuthal angle:  mrad

- Scattered lepton azimuthal:  mrad

- Scattered lepton energy: 

±1 %
±20

±1
±0.5 − 1.0 %
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Investigation of Model Bias vs.  q⊥ [GeV]

34

• Leading uncertainty is model bias in the unfolding for  and 

• Difference in the result when unfolding using RAPGAP and DJANGO

• Reporting Abs. Errors; central values are very close to 0.0

• The Total Uncertainty is quite stable between harmonics

cos(2ϕ) cos(3ϕ)
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Jet Substructure Observables

35
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IBU Generalization

36

Using Classifiers that 
approximate the 
Likelihood ratio

IBU

Continuous 
Generalization

Both converge to maximum likelihood estimate of particle-level distribution
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Cross Section & ϕ

37

Integration over 
emitted gluon 
phase space

Gluon Matrix 
Element

Fourier Coefficient 
(Introduces  
dependance)

ϕ
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Differential Cross Section

38

Credit: Fanyi Zhao
Note: slightly different angle definition, but 

background still applies ]
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