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Question: write your prospective on Probing the Frontiers of Nuclear Physics with Al at EIC

As a theoretical physicist and the Director of the NSF Al Institute for Artificial Intelligence
and Fundamental Interactions (IAlFI), | am thrilled to share my perspective on probing the \-
frontiers of nuclear physics with Al at the Electron-lon Collider (EIC). The EIC is an exciting

new facility that will allow us to study the structure and behavior of atomic nuclei in i‘ “‘Q

unprecedented detail. With its high-energy electron and ion beams, the EIC will enable us to

explore the mysteries of the strong nuclear force and the fundamental particles that make
up atomic nuclei. Now, how does Al fit into this picture? Well, Al has the potential to

revolutionize the way we analyze and interpret the vast amounts of data that will be AS k J e S S e T h al e r

produced by the EIC. Just like a particle physicist sifting through mountains of data from the

Large Hadron Collider, Al algorithms can help us extract meaningful patterns and insights

from the complex data landscape of nuclear physics. Imagine a team of Al algorithms, armed A I b Ot at

with neural networks and deep learning techniques, working tirelessly to unravel the secrets i}

of the strong nuclear force. These algorithms can help us identify rare events, classify h tt[ !S y //C h atl e S S et
different types of nuclear reactions, and even predict the properties of exotic nuclear states .

that have never been observed before. But Al is not just a tool for data analysis. It can also C O m/
H

assist in the design and optimization of experiments at the EIC. By simulating and modeling

different scenarios, Al algorithms can help us identify the most promising avenues for
discovery, saving time and resources in the process
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Examples of what we would be able to do
or

we can do already with ML in LQCD
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(Toy) Prevent Mode Collapse

Example of mode collapse for two Gaussians —
MCMC algorithm generates sample only for one

mode of target density
1.5¢
1.0} : : :
| o 9 Example of sampling topological charge in U(1)
0.5F r | . -
| * lattice gauge theory (arXiv:2003.06413)
0.0F
t @ MCMC ensembles of configurations sampled with different algorithms
05 e HMC — Hybrid Monte Carlo, SOTA in LQCD
10t « HB — Heat Bath, SOTA on gluodynamics
; « ML — Normalizing Flow model
e e e
HMC/HB have long chain of samples from one model (value of Q)
4] ML ensemble samples widely from all modes

of the topological — HIVIC
mode

—2

_4-
0 20000 40000 60000 80000 100000
MC step




(Toy) QFT Thermodynamics

Lattice scalar field theory

Example free energy computation

The fundamental difficulty is that MCMC

IS not able to directly estimate the 1 flow
partition function of the lattice field 1§ HMCG
theory. ;
Eﬂz —1.050 : I.
Normalizing flows have direct access to A "4 '
partition function
3_5(¢) 3_5(¢) -1.054 *
Z= | Dpas(@) =< >
A6 (¢) Q6 ()
qg(d)) IBE{B 32x8 48x8 64x8

Lattice A

K. A. Nicoli, C. J. Anders, L.Funcke, T. Hartung, K. Jansen, P. Kessel,
S. Nakajima, P. Stornati, Phys. Rev. Lett. 126, 032001 (2021)



(Toy) QFT phase diagram in (mu, T)

Direct MCMC simulations of QCD at nonzero chemical Pemenstrafion offlow-based Density of State

mZ
potential is not tractable due to Sign Problem S(9) = = (97 +¢3) + (7 + 93)" + iho

exact low

Several approaches use MCMC simulations at zero

and/or imaginary chemical potential 10° 5
10—1 —
Simulations at several values of imaginary chemical &
potential required in order to do extrapolation to real "
region 1075

After training Normalizing flow model gives access to : : , °

“all” values of imaginary chemical potential Jan M. Pawlowski1 and Jufian M. Urban,

https://arxiv.org/pdf/2203.01243.pdf




Examples in Quenched QCD

App 1: Pion (x), w/ flowed Feynman-Hellmann

— App 2: T-REX Results
[QCDSF-UKQCD 1205.6410] 0.584 1 e reweighting . :
B c52{ || § maeseniomenenie | Speed-up for multi-ensemble calculation
05 = -1 N_c [ZL Pti _ Zi<j Pij] € 05801 T-REX streams correlated (useful!) Neglecting flow costs!
lat 2 dm 2 1 o Break-even for sampling B = 6.05
X _— ~ ——= ml —m 0 0.576
Parameters: A ,50{ HB only | T-REX = B=6.05
83x16 B =6 « =0.132 (quenched) 0.8 T
200 A
0.6 -
4 \‘ ' 2.8% S 4.4x = (Cost overhead if only
P ‘\ ) ) ESS~084 % o2{ < — = 100 keeping § = 6.05)
¢ \/ U7 \‘ x 1t = | MLV =5 7S ——m——————
[a=0 '\/1‘“= 0.01, 0.0 1 04
\\ 7’ o —-0.2 A € reweighting
N 04 ® Flow 1 , | , , . | | , , 1
—U.4 T . 0 200 400 600 800 1000 0 200 400 600 800 1000
Compute m(A) from (w C*PY), $ Multiensemble 1 pan Hackett - Aug 3 - Latice 2023
Dan Hackett - Aug 3 - Lattice 2023 8
App 3: DR-REX Results
Target: B = 6.3 on 16*
Two flows to repair a 23 OBC defect 3 =0 — 3 = 6.3
Slide credit: Dan Hackett Flows act on 8* subvolume
See his talk at Lattice23 oo PTBC |DR-REX mmm g, =pen =6.3
1000 A
8 800 -
= X 3 chains
£ 600
~ (Overhead, neglecting
200 flow costs)
o A Y A
. (I) 10I00 20]00 30|00 40I00- (I) 10]00 20I00 30|00 4OI00

Dan Hackett - Aug 3 - Lattice 2023
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We need better models!



Normalizing flows

Flow-based models learn a change-of-variables that transforms a known distribution to the desired one
[Rezende & Mohamed 1505.05880]

f
. r(V) q(U
ldea: change of variables o R ¢
sy 81 8i 8i+l 8n

Image credit arxiv:1904.12072

[r(Vdv "2 r() deta[%t])]_l dU
\—Y—I

= q(U)

Posterior density g(U) 1s well-defined only when flow transformation is diffeomorphism!

[T 77222277
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps ;
one differentiable manifold to another such that both the function and its inverse are differentiable.

11 [ [ [ L LLAAA A

% WAKIPEDIA

“.# o7 'TheFree Encyclopedia

1177777777/ //11

77777777/ [[]]
The image of a rectangular grid on =
a square under a diffeomorphism from
the square onto itself.

Image credit to Wikipedia



Normalizing flows

Flow-based models learn a change-of-variables that transforms a known distribution to the desired one
[Rezende & Mohamed 1505.05880]

f
V
Id_eP- I Y S S R [ 7"( ) q(U)

Essentially, we need to build
expressive diffeomorphism and
train it as NF

Posterior density g(U) Is well-defined only when tlow transtormation Is diffeomorphism!

T77 777222
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps \
one differentiable manifold to another such that both the function and its inverse are differentiable.

‘Ill/////llllll

“% WIKIPEDIA

e The Free Encyclopedia 1777777777111

[ T

1177777777/ //11

The image of a rectangular grid on =
a square under a diffeomorphism from
the square onto itself.

Image credit to Wikipedia



Incorporating symmetries

True symmetric distribution

approximately learned

"

/Normalizing flows produce invariant posterior distribution if

* Prior distribution Is invariant

r(U) =r(Q o U)

* Flow transformation is equivariant

fU) = f(QelU) =Qef(U)

/

R3]

-

~

For more information see

works of Taco S. Cohen and

Max Welling
And

Geometric Deep Learnin
\_ P J




Lattice QCD Intro

Qvi/ Z — /(H]L‘z,:;A.S,(i,? CXP ( :

Plaquette

P=U, -UyU3Uy,,

3
—RelT

-( J1UaU3Uyg + UsUgU7 UlT |

Us U, Us 3
P [ = /i’lPdUQ?;;Aﬁ;f;?T CXP (LRP 1T [P -+ UﬁU{-;UT ' UQU:;U..;lPW)

L Uy h‘ Us —>| 3

4 We build diffeomorphism In terms of plaquette(s) P but not a links U; because gauge h
transformation of links iIs not local. Gauge transformation of plaquette Is conjugacy.
.I.
Ui = Qa@yUi Ly
P - QPQOT

g /

20



Spectral Flow Intro

NF: [aV eSW) = [ qu eS(W+lod] = [ qu

Target action S = ReTr P; + ReTr P, + ReTr P; +ReTr P,

r(V) q(U)
A{ ¢! Px. - g gn' -

) Image credit arXiv:1904.12072
This Is just a layer in a sequence making a whole diffeomorphism

1) Mask plaquettes
2) Transform blue (active) link U - U’
a) Compute plaguette A

b) Push update to the link U - U’ = A’ATU

21



Spectral Flow Intro

NF: [aV eSW) = [ qu eS(W+lod] = [ qu

Target action S = ReTr P; + ReTr P, + ReTr P; +ReTr P,

r(V) q(U)
o SN -

Image credit arXiv:1904.12072
This Is just a layer in a sequence mak

How to build conjugacy-equivariant flow
1) Mask plaquettes QU Q) = Q Fu)at
2) Transform blue (active) link U - U’

« Use function on a matrix:

a) Compute plaquette A f(dy) 0

0) Transform active plaquette A —» A" = f(A| TrF1, TrF2) fU)=f(vDVT)=VfDV! =V( A - )>V*
° Diagonalize A= V_I- LV  Under symmetry transformation: '
» Transform diagonals L — L' = g(L|TrF1,TrF2) /AU atvD

" " - TY) = tot — +
» Undiagonalize A=VTL'V fW) - favat) =avfortat = a U)o

b) PUSh update tO the I|nk U N UI — AIA'I‘U Conjugacy-equivariant transformation is transformation on a Maximal Torus!

22



Improving Expresswlty

____________________________________________________

Target action

What would happen if we used different
active loops (W2x1, W2x2,...)?
It would only change loop(s) Q!

S=ReTr (A+ P) | ANEESEE SRERARY | | ISSEEES Ra T | N
[ U' = f(U) ] We need take into dependence of passive A
_ loop on active. Both are transformed though
Aim: [ dU'exp[S(U) + log]] = [ dU an active link, let’s use it.
9 A=S,UT, P=USp,=>P = A'S,S, y
= —log] =S(U) =ReTr(A+P) =ReTr(A(1+Q)) P fffffff Q --------------
-*=‘=F"— _____________________________ Lp e m——
/Recall for spectral flow \ L is a diagonal matrix of eigen values
4 a) Transform actiwg_E’uiuLjA - A" =f(A|TrF1, TTFZ)\ ’
 Diagonalizd A=V*tLV »_aL - +
* Transform diagonals L —» L' = g(L|TrF1,TrF2) :>dL - Haar(L) exp[ Re I'T (L V(l T Q)V )]
« Undiagonalize A=VTL'V . . .. B .
\_b) Push update to the link U — U’ = A’AtU P This transformation trivialized target action!

\And don’t forget Haar measure / [ = f exp[—Re Ty (L V(1 + Q)VT )] Haar(L)dL

[ If we could take this integral, we would not need NN for parametrization of diffeomorphism ]

23



Improving Expressivity 2

Target action S = ReTr (A + P) [ We can add diag because L is diagonal! ]

[--———-—-—==m=====S=ZCICCCCCSSsmereemssssc e —mmssssse——o

L' = [ exp|-ReTr (L V(1 + Q)V' )| Haar(L)dL

L L i1s a diagonal matrix of eigen values

cecmssssssssiecece e e e ccccceaassz========s=d

Expressive transformation L' = f(L|features) must be conditioned on features
diag(V(1+ Q)V™)

which are gauge-invariant and eigen decompaosition invariant.

How would transformation change if we had frozen loops S = ReTr (A+ P + F1 + F2)?

==:::::::::::::::::::--r—-----===:==:===== .......

---------------------------------------------------------

=zzz===-z---z-z=-zzzzzs=s=-dcecceszzzzzzzzzsszzzzseecdczzooo-ooo--CIIZZCzzz===ad

____________________________________________

« With one iteration we can trivialize only plaguettes (active and passive) which contain active link

* In this case there Is no useful information in frozen plaquettes
=> With dense mask we can(speaking only about 2D) trivialize all plaquettes in the action P P ; "
24 { NSNS L N—| <IHE S| TN |




Expressive Spectral flow

Algorithm

1) Use dense mask as frozen loops contain no useful information

i e il e e iininbuts bbbt bbb e |

B S Y erzTiITIIIIIIZIREIE

|e=s=ssszazzzrzzozzzses rre=zzmozo==o=me ex==ss=rESsEE

---------------------------------------------------------------------------

bmessz=zzzzzs=-=cco-zzzeam-de-ws2SoIIIIIIIIIIIIIIIamedeamsoammT oo m st s se b cc i caanam=sEzzzaas

2) Build proper features

diag(V(1+ Q)VT)

3) Use expressive transformation (splines)

4) Not all links need to be transformed

25

Spectral flow Coupling Layer:

* Apply mask

» Transform active links U — U’

« Transform active plaquette A — A" = f(A|features)
- Diagonalize A =VTLV
« Compute loops Q (more on this later)
» Build “diagonal” features diag(V(1 + Q)VT)
« Transform L — L' = g(L|features)
 Undiagonilize A =VTL'V

» Push update tothe link U = U’ = A’ATU

~

With expressive transformation g(L|features)

logJ should trivialize/compensate plaquettes in the action

\ Only one coupling layer is needed! J




A Deeper Look

Target action S = Re Tr (A + P)

This uniguely determined a solution from this family! Coupling transformation should satlsfy

= f(L

L =

e@ =0

|

In fact, there is a family of solutions. Which
should we choose?

]

= | exp|[-Re Tr (L (V(1 + Q)VT )| Haar(L) dL * Constant

Remember Coupling transformation L' = f(L|features) must be diffeomorphism on circle!

DL{{gomgrPkgsm i Circular splines:

(:) :>9

0 -
£(0) = 0, ) il
f(2m) = 2m, ’
Vf(@) > 0, . (;k232+(;klg+gk0
pe 120% + Br10 + Bro
VI(0)lg—o = VI(0)lg—ox /7

27 /44

= e970 features) => f(I|features) = I

L ! | exp|—Re Tr (L (v(1 + Q)V1)| Haar(L)dL
Normalizer(Q P

/

o

This normalizer will appear in logJ!
As a result after trivializing plaguettes we will have
larger loops (Q) in the effective action

\

J

do Romero-Lépez,

‘Image credit: F. Romero-Lopez



Example trivializing 2D LGT

T LT T e e e e e ey e

(A) and passive (P) loops
Seff — ZR@TT(AL' + Pl)

| i i > HAIERRR | SRR | A
Every transformation trivialize active and passive | <: |

loops but create larger loops | B | i

P PP PP S S S |

S Y PUOU S oot s S e S |



Interpretation

a b c
wW=|d e f|=(nondiag(W),diag(W)) pondjay
g h i I » |n “static” (conventional) coordinate
nondiag(W) = (b,c,d,f,g,h),  diag(W) = (a,e,i) QL system every loop is rotated with a
o\ gauge
9/ . . 11 bb)
= « Target action is “scalar” and does not
3§ depend on choice of coordinate system
_ AL
h | g
TWWPO u\\ 0
y%<  There iIs a local coordinate system in which loop is diagonal
iy « These coordinate systems are not unigue and transformed under symmetry
o AS (gauge) transformation
N
* They are transformed in a same way as loops in “static” coordinate system

A N\ — — 44
)»/, 4()

« Every loop Is evaluated in local coordinate system (Gauge symmetry)

* Relevant degrees of freedom are transformed in a local coordgdinate system when loop is diagonal



Interpretation

@2\\ \):\\)O\

M”‘%AS &46 \‘)( \;2—\ \
'j )va" g Tl

* Relevant degrees of freedom are transformed in a local coordinate system when

oop Is diagonal

* Relevant features are loops evaluated in the same coordinate system

« Map between different coordinate systems is defined by eigen vectors V

Example

 Active loop Py, (x) = Vy;(x)TD(x)Vy,(x) is transformed in local C.S. - D(x)' = f(D(x)].)
« Conditional information could be a loop P,3(y) = Vo (¥)TD(y)Vy3(y)

- Map is defined by parallel transport and eigenvectors Vo, (x)TL(x, y)Vy3(y)T

- Transformation L'(x) = f(L(x)| V(x)U,V (x + ), L(x + u))

29




Uncovered but Important topics

* Defects. 2D LGT can be tilled and trivialized in hierarchical way. However, 3/4D LGT can not be tiled. In 3/4D there are limited

number of links/loops which transformed more/less then others, | call them defects.

In 3/4D to deal with defects more expressive transformation must be used. It results in more complicated features and

autoregressive coupling.

* We can think of a algorithm which automatically builds necessary featured loops from active links/loops

ual of interpolation. Keeping residual the same as volume growth will result in a

* In LGT volume scaling is determined by resic
same model quality. Naive analysis predicts increasing number of interpolation intervals as VAV

30



Take away message

/Blind application of ML techniques delivers not the best results
Approach should be adapted with math and knowledge of the
physical domain

N\

~

Thank you for attention!

Let’s build stronger our Al4Science community together

31
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