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Examples of what we would be able to do

or

we can do already with ML in LQCD



(Toy) Improving bias at small sample size
Long autocorrelations unseen until sample size >> autocorrelation time

baseline

Chiral condensate

uncertainty

Uncertainty scales correctly as 𝑂(
1

𝑁𝑖𝑛𝑑𝑒𝑝
))

but results are biased

Only at large sample size uncertainty jumps to correct 

values

Simulations in a Schwinger model near criticality

• “Toy” QCD (confinement, topological freezing, 

UV fluctuations)

• HMC stands for Hybrid Monte Carlo algorithm 

which is state-of-the-art in LQCD

• Flow stands for NF model implemented in 

arXiv:2202.11712

Normalizing Flow model (Flow in th figure) has 

correctly estimated uncertainty even at “small” 

sample size

arxiv.org/abs/2202.11712
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(Toy) Prevent Mode Collapse
Example of mode collapse for two Gaussians –

MCMC algorithm generates sample only for one 

mode of target density

Example of sampling topological charge in U(1) 

lattice gauge theory (arXiv:2003.06413)

MCMC ensembles of configurations sampled with different algorithms

• HMC – Hybrid Monte Carlo, SOTA in LQCD

• HB – Heat Bath, SOTA on gluodynamics

• ML – Normalizing Flow model

HMC/HB have long chain of samples from one model (value of Q)

ML ensemble samples widely from all modes

Think of it as of index 

of the topological 

mode



(Toy) QFT Thermodynamics

Example free energy computation

Lattice scalar field theory

The fundamental difficulty is that MCMC 

is not able to directly estimate the 

partition function of the lattice field 

theory.

Normalizing flows have direct access to 

partition function

𝑍 = න𝐷𝜙𝑞𝜃 𝜙
𝑒−𝑆(𝜙)

𝑞𝜃 𝜙
=

𝑒−𝑆 𝜙

𝑞𝜃 𝜙
𝑞𝜃 𝜙

K. A. Nicoli, C. J. Anders, L.Funcke, T. Hartung, K. Jansen, P. Kessel, 

S. Nakajima, P. Stornati, Phys. Rev. Lett. 126, 032001 (2021)



(Toy) QFT phase diagram in (mu, T)

Demonstration of flow-based Density of State 

𝑆 𝜙 =
𝑚2

2
𝜙1
2 + 𝜙2

2 + 𝜆 𝜙1
2 + 𝜙2

2 2
+ 𝑖ℎ𝜙

Direct MCMC simulations of QCD at nonzero chemical 

potential is not tractable due to Sign Problem

Several approaches use MCMC simulations at zero 

and/or imaginary chemical potential

Simulations at several values of imaginary chemical 

potential required in order to do extrapolation to real 

region

After training Normalizing flow model gives access to 

“all” values of imaginary chemical potential Jan M. Pawlowski1 and Julian M. Urban, 

https://arxiv.org/pdf/2203.01243.pdf



Examples in Quenched QCD

15

Slide credit: Dan Hackett

See his talk at Lattice23



We need better models!



Flow-based models learn a change-of-variables that transforms a known distribution to the desired one
[Rezende & Mohamed 1505.05880]

Normalizing flows

Idea: change of variables
𝑟(𝑉) 𝑞(𝑈)

Posterior density 𝑞(𝑈) is well-defined only when flow transformation is diffeomorphism!

∫ 𝑟 𝑉 𝑑𝑉 = ∫ 𝑟 𝑈 det
𝜕 𝑓 𝑉 −1

𝜕𝑈
𝑑𝑈

= 𝑞 𝑈

𝑼 = 𝒇(𝑽)

Image credit to Wikipedia

Image credit arXiv:1904.12072 
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Image credit to Wikipedia

Image credit arXiv:1904.12072 Essentially, we need to build 

expressive diffeomorphism and 

train it as NF 



Normalizing flows produce invariant posterior distribution if

• Prior distribution is invariant

𝑟 𝑈 = 𝑟(Ω ∘ 𝑈)

• Flow transformation is equivariant

𝑓 𝑈 → 𝑓 Ω ∘ 𝑈 = Ω ∘ 𝑓(𝑈)

Incorporating symmetries

19

approximately learnedTrue symmetric distribution

For more information see 

works of Taco S. Cohen and 

Max Welling

And

Geometric Deep Learning



Lattice QCD intro

20

We build diffeomorphism in terms of plaquette(s) 𝑃 but not a links 𝑈𝑖 because gauge 

transformation of links is not local. Gauge transformation of plaquette is conjugacy.

𝑈𝑖 → Ω𝑎(𝑖)𝑈𝑖 Ω𝑏(𝑖)
†

𝑃 → Ω𝑃Ω†

Plaquette



Spectral Flow intro

NF: ∫ 𝑑𝑉 𝑒𝑆 𝑉 = ∫ 𝑑𝑈 𝑒𝑆 𝑈 +𝑙𝑜𝑔𝐽 = ∫ 𝑑𝑈

1) Mask plaquettes

2) Transform blue (active) link 𝑈 → 𝑈′
a) Compute plaquette 𝐴
b) Transform active plaquette 𝐴 → 𝐴′ = 𝑓 𝐴 𝑇𝑟𝐹1, 𝑇𝑟𝐹2)

• Diagonalize 𝐴 = 𝑉† 𝐿 𝑉
• Transform diagonals 𝐿 → 𝐿′ = 𝑔 𝐿 𝑇𝑟𝐹1, 𝑇𝑟𝐹2
• Undiagonalize 𝐴 = 𝑉† 𝐿′ 𝑉

b) Push update to the link 𝑈 → 𝑈′ = 𝐴′𝐴†𝑈

21

Target action 𝑆 = 𝑅𝑒𝑇𝑟 𝑃1 + 𝑅𝑒𝑇𝑟 𝑃2 + 𝑅𝑒𝑇𝑟 𝑃3 +𝑅𝑒𝑇𝑟 𝑃4

This is just a layer in a sequence making a whole diffeomorphism
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Improving Expressivity

Target action

𝑆 = 𝑅𝑒 𝑇𝑟 (𝐴 + 𝑃)

Aim: ∫ 𝑑𝑈′exp 𝑆 𝑈 + 𝑙𝑜𝑔𝐽 = ∫ 𝑑𝑈

 −𝑙𝑜𝑔𝐽 = 𝑆 𝑈 = 𝑅𝑒𝑇𝑟 𝐴 + 𝑃 = 𝑅𝑒𝑇𝑟(𝐴 1 + 𝑄 )

𝑈′ = 𝑓(𝑈) We need take into dependence of passive 

loop on active. Both are transformed though 

an active link, let’s use it.

𝐴 = 𝑆𝐴𝑈
†, 𝑃 = 𝑈 𝑆𝑃 => 𝑃 = 𝐴†𝑆𝐴𝑆𝑃

Recall for spectral flow

And don’t forget Haar measure


𝑑𝐿′

𝑑𝐿
= 𝐻𝑎𝑎𝑟(𝐿) exp −𝑅𝑒 𝑇𝑟 𝐿 𝑉 1 + 𝑄 𝑉†

 𝐿′ = ∫ exp −𝑅𝑒 𝑇𝑟 𝐿 (𝑉 1 + 𝑄 𝑉† 𝐻𝑎𝑎𝑟(𝐿)𝑑𝐿

This transformation trivialized target action!

What would happen if we used different 

active loops (W2x1, W2x2,…)?

It would only change loop(s) Q!

𝐿 is a diagonal matrix of eigen values

23

If we could take this integral, we would not need NN for parametrization of diffeomorphism



Improving Expressivity 2

Expressive transformation 𝐿′ = 𝑓(𝐿|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) must be conditioned on features

𝒅𝒊𝒂𝒈(𝑽 𝟏 + 𝑸 𝑽†)

which are gauge-invariant and eigen decomposition invariant.

We can add 𝑑𝑖𝑎𝑔 because L is diagonal!Target action 𝑆 = 𝑅𝑒 𝑇𝑟 (𝐴 + 𝑃)

𝐿′ = ∫ exp −𝑅𝑒 𝑇𝑟 𝐿 𝑉 1 + 𝑄 𝑉† 𝐻𝑎𝑎𝑟(𝐿)𝑑𝐿

How would transformation change if we had frozen loops 𝑆 = 𝑅𝑒 𝑇𝑟 (𝐴 + 𝑃 + 𝐹1 + 𝐹2)?

• With one iteration we can trivialize only plaquettes (active and passive) which contain active link

• In this case there is no useful information in frozen plaquettes

=> With dense mask we can(speaking only about 2D) trivialize all plaquettes in the action

𝐿 is a diagonal matrix of eigen values

24



Expressive Spectral flow
Algorithm

1) Use dense mask as frozen loops contain no useful information

2) Build proper features

3) Use expressive transformation (splines)

4) Not all links need to be transformed

Spectral flow Coupling Layer:

• Apply mask

• Transform active links 𝑈 → 𝑈′

• Transform active plaquette 𝐴 → 𝐴′ = 𝑓 𝐴 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
• Diagonalize 𝐴 = 𝑉†𝐿 𝑉
• Compute loops 𝑄 (more on this later)

• Build “diagonal” features 𝑑𝑖𝑎𝑔(𝑉 1 + 𝑄 𝑉†)
• Transform 𝐿 → 𝐿′ = 𝑔(𝐿|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
• Undiagonilize 𝐴 = 𝑉†𝐿′ 𝑉

• Push update to the link 𝑈 → 𝑈′ = 𝐴′𝐴†𝑈

With expressive transformation 𝑔(𝐿|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
logJ should trivialize/compensate plaquettes in the action.

Only one coupling layer is needed!

25



Remember Coupling transformation 𝐿′ = 𝑓(𝐿|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) must be diffeomorphism on circle!

This uniquely determined a solution from this family! Coupling transformation should satisfy: 

• 𝐿′ = 𝑒Θ
′=0 = 𝑓(𝐿 = 𝑒Θ=0|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) => 𝑓 𝐼 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝐼

A Deeper Look
Target action 𝑆 = 𝑅𝑒 𝑇𝑟 (𝐴 + 𝑃)

𝐿′ = ∫ exp −𝑅𝑒 𝑇𝑟 𝐿 (𝑉 1 + 𝑄 𝑉† 𝐻𝑎𝑎𝑟(𝐿) 𝑑𝐿 ∗ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

In fact, there is a family of solutions. Which 

should we choose? 

𝐿′ =
1

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟(𝑄)
∫ exp −𝑅𝑒 𝑇𝑟 𝐿 (𝑉 1 + 𝑄 𝑉† 𝐻𝑎𝑎𝑟 𝐿 𝑑𝐿

This normalizer will appear in logJ!

As a result after trivializing plaquettes we will have 

larger loops (Q) in the effective action

Image credit: F. Romero-López



Example trivializing 2D LGT

Effective action on every step contains all active 

(A) and passive (P) loops

𝑆𝑒𝑓𝑓 = ∑𝑅𝑒𝑇𝑟 𝐴𝑖 + 𝑃𝑖

Every transformation trivialize active and passive 

loops but create larger loops

27



Interpretation

𝑊 =
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⇒ 𝑛𝑜𝑛𝑑𝑖𝑎𝑔 𝑊 , 𝑑𝑖𝑎𝑔 𝑊

𝑛𝑜𝑛𝑑𝑖𝑎𝑔 𝑊 = 𝑏, 𝑐, 𝑑, 𝑓, 𝑔, ℎ , 𝑑𝑖𝑎𝑔 𝑊 = (𝑎, 𝑒, 𝑖)

• Every loop is evaluated in local coordinate system (Gauge symmetry)

• Relevant degrees of freedom are transformed in a local coordinate system when loop is diagonal

• Relevant features are loops which are transformed to local diagonal coordinate system

• In “static” (conventional) coordinate 

system every loop is rotated with a 

gauge

• Target action is “scalar” and does not 

depend on choice of coordinate system

• There is a local coordinate system in which loop is diagonal

• These coordinate systems are not unique and transformed under symmetry 

(gauge) transformation

• They are transformed in a same way as loops in “static” coordinate system

28



Interpretation

Example

• Active loop 𝑃01 𝑥 = 𝑉01 𝑥 †𝐷 𝑥 𝑉01 𝑥 is transformed in local C.S. - 𝐷 𝑥 ′ = 𝑓 𝐷 𝑥 . )

• Conditional information could be a loop  𝑃23 𝑦 = 𝑉23 𝑦 †𝐷 𝑦 𝑉23(𝑦)

• Map is defined by parallel transport and eigenvectors 𝑉01 𝑥 †𝐿(𝑥, 𝑦)𝑉23 𝑦 †

• Transformation L′ x = f L x 𝑉 𝑥 𝑈𝜇𝑉 𝑥 + 𝜇 , L(x + 𝜇))

• Relevant degrees of freedom are transformed in a local coordinate system when 

loop is diagonal

• Relevant features are loops evaluated in the same coordinate system

• Map between different coordinate systems is defined by eigen vectors 𝑉

29



Uncovered but Important topics

• Defects. 2D LGT can be tilled and trivialized in hierarchical way. However, 3/4D LGT can not be tiled. In 3/4D there are limited 

number of links/loops which transformed more/less then others, I call them defects. 

• In 3/4D to deal with defects more expressive transformation must be used. It results in more complicated features and 

autoregressive coupling.

• We can think of a algorithm which automatically builds necessary featured loops from active links/loops

• In LGT volume scaling is determined by residual of interpolation. Keeping residual the same as volume growth will result in a 

same model quality. Naive analysis predicts increasing number of interpolation intervals as 𝑽 𝑽

30



Take away message

Blind application of ML techniques delivers not the best results. 

Approach should be adapted with math and knowledge of the 

physical domain

31

Thank you for attention!
Let’s build stronger our AI4Science community together
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