Entanglement (and thermalization?) in pair creation

Adrien Florio

Thermalization, from Cold Atoms to Hot Quantum Chromodynamics

"Real-time non-perturbative dynamics of jet production in Schwinger model: quantum entanglement and vacuum modification" with D. Frenklakh, K. Ikeda, D. Kharzeev, V. Korepin, S. Shi, K. Yu, PRL 131 (2023) 2, 021902

Work in progress

"Real-time non-perturbative dynamics of jet production in Schwinger model: quantum entanglement and vacuum modification" with D. Frenklakh, K. Ikeda, D. Kharzeev, V. Korepin, S. Shi, K. Yu, PRL 131 (2023) 2, 021902

Work in progress

Motivation

Schwinger model

Electromagnetism in 1 dimension

Electromagnetism in 1 dimension

Full fledged quantum field theory

Simulable in the near future (?)

Solved in some limit ($m \rightarrow 0$)

Schwinger model

Electromagnetism in $1\ {\rm dimension}$

Full fledged quantum field theory

Simulable in the near future (?)

Solved in some limit ($m \rightarrow 0$)

 $\nabla E = \rho$

Confines $V(x) \propto x$

Highly non-trivial vacuum

Electromagnetism in 1 dimension

Full fledged quantum field theory

Simulable in the near future (?)

Solved in some limit ($m \rightarrow 0$)

 $\nabla E = \rho$

Confines $V(x) \propto x$

Highly non-trivial vacuum

 $\textbf{Use-case/testbed} \longleftrightarrow \textbf{Learn new physics (dynamics)}$

Not QCD, only toy model (1*D*, no dynamical gluons)

Only qualitative predictions

Look at string breaking

En.~ $m + m + \alpha l_1$

Look at string breaking

• \rightarrow • En.~ $m + m + \alpha l_1$ • \longrightarrow • En.~ $m + m + \alpha l_2$

Look at string breaking

• \rightarrow • En.~ $m + m + \alpha l_1$ • \rightarrow • En.~ $m + m + \alpha l_2$ • \rightarrow • En.~ $m + m + \alpha l_3$

Look at string breaking

• + •

En.~ $m + m + \alpha l_1$

En.~ $m + m + \alpha l_2$

En.~ $m + m + \alpha l_3$ En.~m + m + m + mwhen $\alpha l_3 > 2m$

Look at string breaking

• > •

 $\bullet \longrightarrow \bullet$

En.~ $m + m + \alpha l_1$

En.~ $m + m + \alpha l_2$

 $En.\sim m + m + \alpha l_3$ \downarrow $En.\sim m + m + m + m$

Screen field by creating particles!

when $\alpha l_3 > 2m$

Look at string breaking

• > •

 $\bullet \longrightarrow \bullet$

Screen field by creating particles!

Motivation: QCD jets

En.~ $m + m + \alpha l_1$

En.~ $m + m + \alpha l_2$

$$H(t) = \int \mathrm{d}x \left[\frac{1}{2} \boldsymbol{E}^2 + \hat{\psi} \left(-i\gamma^1 \partial_1 + \boldsymbol{g} \boldsymbol{A}^1 \gamma_1 + \boldsymbol{m} \right) \hat{\psi} + \boldsymbol{j}_{\text{ext}}^1(t) \boldsymbol{A}_1 \right]$$

Idea: • Find $|vac\rangle_{t<0}$ • Compute $|\psi(t)\rangle = e^{-i\int_0^t dt' H(t')} |vac\rangle_{t<0}$

Idea: • Find
$$|vac\rangle_{t<0}$$

• Compute $|\psi(t)\rangle = e^{-i\int_0^t dt' H(t')} |vac\rangle_{t<0}$

see also [74, Casher, Kogut, Susskind], [12,13, Kharzeev, Loshaj], [14, Berges, Hebenstreit]

In practice

- Staggered fermions χ_n
- Integrate out *E*: $\partial_1 E = \rho + \rho_{ext}$
- (Map to non-local spin chain)

$$\begin{split} H(t) &= H_{\pm} + H_{ZZ} + H_{Z}(t) \\ H_{\pm} &= \frac{1}{4a} \sum_{n=1}^{N-1} (X_{n} X_{n+1} + Y_{n} Y_{n+1}) \\ H_{ZZ} &= \frac{ag^{2}}{4} \sum_{n=1}^{N-1} \sum_{m=1}^{n} \sum_{k=1}^{m-1} Z_{m} Z_{k}, \ H_{Z} &= \sum_{n=1}^{N} f(n) Z_{n} \end{split}$$

- Use exact diagonalization
- Compute observables $\bar{O}(t) = \langle \psi(t) | O | \psi(t) \rangle$

Results, m = 0.25, g = 0.5, a = 1

Results, m = 0.25, g = 0.5, a = 1

 $\nu : \langle \bar{\psi} \psi \rangle$, S_{EE} : entanglement entropy A/B

Is entanglement manifest in correlations \leftrightarrow measurable?

Correlation

1) Look at $\langle \Delta \nu_{N/2+l+1}(t) \Delta \nu_{N/2-l}(t) \rangle$, $\Delta \nu_n = \bar{\psi} \psi|_n(t) - \bar{\nu}$

Correlation

1) Look at $\langle \Delta \nu_{N/2+l+1}(t) \Delta \nu_{N/2-l}(t) \rangle$, $\Delta \nu_n = \bar{\psi} \psi|_n(t) - \bar{\nu}$

2) Compare to uncorrelated reference case

Correlation

2) Compare to uncorrelated reference case

$$|\psi_{ref}\rangle = |\psi_L\rangle + e^{i\phi}_{\uparrow}|\psi_R\rangle$$

Random uniform phase

$$\langle\langle\psi_{\rm ref}|\mathbf{0}|\psi_{\rm ref}\rangle
angle\equiv\int\langle\psi_{\rm ref}|\mathbf{0}|\psi_{\rm ref}
angle\frac{\mathrm{d}\varphi}{2\pi}=rac{\langle\psi_{\rm L}|\mathbf{0}|\psi_{\rm L}
angle}{2}+rac{\langle\psi_{\rm R}|\mathbf{0}|\psi_{\rm R}
angle}{2}$$

Next steps

Finite temperature

Thermalization/ETH

Next steps

Finite temperature

Thermalization/ETH

Time-evolution: inefficient

Can still do a lot! (TDVP)

Can still do a lot! (TDVP)

Shoutout to [Fishman, Stoudenmire, ITensors]

Outlooks/questions

How to better quantify this?

Compare to canonical simulations?

Symmetry resolved spectrum on C?

- Schwinger model can still teach us some physics
- Direct observation of quantum properties of string breaking
- Suggests enhanced correlations at low/mid rapidities in jet production
- Hints of thermalization

Thank you!

Trailer #1: entanglement spectrum

Entanglement spectrum: $\{p_i\}$, e-values of ρ_A

$$S_{\text{Rényi},\alpha} \equiv rac{\ln \operatorname{tr}(
ho_A^{lpha})}{1-lpha} \qquad \qquad \mathcal{E} \equiv rac{1-\operatorname{tr}
ho_A^2}{1-1/D} = rac{1-\sum_{i=1}^D p_i^2}{1-1/D} \,.$$

Trailer #1: entanglement spectrum

Trailer #1: entanglement spectrum

Boundary effects

Trailer #2: TN

