Extracting physics parameters and examining observable sensitivity via Bayesian inference and machine learning

A perspective from jet physics in heavy ion collisions

Raymond Ehlers¹

26 September 2023

¹Lawrence Berkeley National Lab/UC Berkeley raymond.ehlers@cern.ch

Probing the Frontiers of Nuclear Physics with AI at the EIC, CFNS

Heavy ion collisions & the Electron Ion Collider

Heavy ion collisions

- · Hot and dense QCD matter
- QGP properties \rightarrow QCD: Length scales resolved by QGP, critical point, etc...
- Messy exp. environment

Electron Ion Collider

- Cold nuclear matter
- Gluon saturation, nucleon spin, nuclear imaging (TMDs, ...), etc...
- Cleaner exp. environment

Heavy ion collisions & the Electron Ion Collider

- Many differences similarities:
- Similar analysis techniques and methods
- Cold nuclear matter effects (eA and pA), hadronization, initial state, etc
- eg. Low x/gluon saturation:
 - Forward pp/pA physics (eg. ALICE FOCAL) complementary to EIC
 - Sensitive to same scattering matrix elements, etc
- Today, share tools and lessons from the heavy ion perspective to apply at the EIC:

How to utilize Bayesian inference?

What information is contained in observables? Thoughts on applying ML to experimental data

Heavy ion collisions and the quark-gluon plasma

- The quark-gluon plasma (QGP) is formed in ultra-relativistic heavy-ion collisions
- What can we learn about QCD from this complex quantum matter?
- How do partons lose energy in the medium?
- What are the relevant length scales and what can the QGP resolve?
- Today, mainly focus on using jets and their substructure to try to answer these questions

Quenching jets in the medium

- Partons propagate and interact with medium, modifying the evolution of the parton shower
- Jet-medium interactions modify the internal jet structure
 - e.g. quasi-particle scattering could deflect a (sub)jet
- Modifications collectively known as "jet quenching"
- These modifications encode properties of QGP, providing opportunities to learn about QCD
- ightarrow Jets are in situ probes of QCD dynamics

Quenching jets in the medium

- Partons propagate and interact with medium, modifying the evolution of the parton shower
- Jet-medium interactions modify the internal jet structure
 - e.g. quasi-particle scattering could deflect a (sub)jet
- Modifications collectively known as "jet quenching"
- These modifications encode properties of QGP, providing opportunities to learn about QCD
- ightarrow Jets are in situ probes of QCD dynamics

Wealth of jet quenching measurements

Raymond Ehlers (LBNL/UCB) - 26 September 2023

Bayesian inference

 $P(\theta|x) = \frac{P(x|\theta)P(\theta)}{P(x)}$

- $P(\theta|x)$: posterior dist.: prob. of θ given x
 - Most prob. value
 - ightarrow best description of data
- $P(x|\theta)$: likelihood *x* is described by θ
 - Depends on covariance, data + theory uncert.
- *P*(θ): prior
 distribution for θ
 - Choice makes
 assumptions explicit

- ightarrow Posterior encodes everything we want to learn
 - · Approach enables computationally tractable approach to extract parameters
 - Although still CPU intensive!

Bayesian inference: high level summary

Raymond Ehlers (LBNL/UCB) - 26 September 2023

JETSCAPE, Phys.Rev.C 107 (2023) 3, 034911 JETSCAPE, Phys.Rev.C 104 (2021) 2, 024905

9

Bayesian inference in the hard sector (2022-present)

• Use recent Bayesian inference results as case study

Data

- Hadron + jet R_{AA}
- Additional jet observables
- 3 $\sqrt{s_{NN}}$, all eligible data
- Treat experimental uncert. correlations where possible

Model

- Extract reparametrized $\hat{q}(T, E, Q)$
- Use calibrated 2+1D hydro
- Multistage: MATTER + LBT
- · Goal: what do jets bring to the analysis?

Strategy

- Significant computing effort O(10M) CPU hours
- Calculated many more observables for differential studies

One of many analyses. See also: Nature Phys. 15 (2019) 11, PRL.126.202301, PRL.126.242301, ...

$\hat{\boldsymbol{q}}$ parametrization

$$\widehat{q}(E, T, Q) = \widehat{q}_{HTL}^{run} \times f(Q^2)$$

$$\widehat{q}_{HTL}^{run} = (a_{s,fix}) \times a_s(\mu^2) C_a \frac{42\zeta(3)}{\pi} T^3 \log(\frac{\mu^2}{6\pi T^2(a_{s,fix})})$$

$$f(Q^2) = \frac{N(\exp((\widehat{c_3}(1-x_B)))}{1+\widehat{c_1}\ln(Q^2/\Lambda_{QCD}^2) + \widehat{c_2}\ln^2(Q^2/\Lambda_{QCD}^2)} \Big|_{Q \ge Q_0}$$

$$\cdot 6 \text{ total parameters:}$$

$$\cdot a_s \qquad \cdot Q_0 \text{ (switching virtuality)}$$

$$\cdot c_1, c_2, c_3 \qquad \cdot t_0 \text{ (start time)}$$

$$10^{-2} \frac{10^{-2}}{0} \frac{1}{5} \frac{10}{10} \frac{15}{20} \frac{25}{25} \frac{30}{35} \frac{35}{40} \frac{45}{50}$$

Taken as one possible candidate model

Raymond Ehlers (LBNL/UCB) - 26 September 2023

JETSCAPE, Phys.Rev.C 107 (2023) 3, 034911 11 JETSCAPE, arXiv:2301.02485

From prior to posterior

Observables posterior

- Reasonable overall agreement
- Some tension for particular measurements
- → Explored in detail in backup

Parameter posterior distributions

14

- Sample parameter posterior to extract \widehat{q}
- Integrate over *Q* dependence when reporting:
- i.e., $\hat{q} = \widehat{\hat{q}_{HTL}} \times f(Q^2)$
- Consistent description using hadron + jet RAA
- Compatible with previous extractions

Application to EIC: gluon saturation

- Extract saturation scale Q_s using measurements at EIC
- If observables are less precise or more ambiguous than expected → Bayesian inference can help:
- Improved precision for cleaner extraction
- Test additional observables for increased sensitivity to saturation scale (see next)
 - See also: RJE, JETSCAPE @ RHIC/sPHENIX predictions, arXiv:2305.15491
- Can also include observables from
 both EIC and forward LHC

Application to EIC: gluon saturation

- Extract saturation scale Q_s using measurements at EIC
- If observables are less precise or more ambiguous than expected → Bayesian inference can help:
- Improved precision for cleaner extraction
- Test additional observables for increased sensitivity to saturation scale (see next)
 - See also: RJE, JETSCAPE @ RHIC/sPHENIX predictions, arXiv:2305.15491
- Can also include observables from
 both EIC and forward LHC

	Inclusive DIS	SIDIS	DIS dijet	Inclusive in <i>p</i> +A	γ +jet in p+A	dijet in p+A
xG_{WW}	_	-	+	-	_	+
xG_{DP}	+	+	-	+	+	+

Raymond Ehlers (LBNL/UCB) - 26 September 2023

EIC Yellow Report, FOCAL LOI, PLB 2018.08.011

Enables many further investigations!

1. Importance of theory uncertainties

2. Information content of observables

Selecting only hadron or jet R_{AA}

Selecting only hadron or jet R_{AA}

Calibrating with low vs high p_{T} hadrons

Raymond Ehlers (LBNL/UCB) - 26 September 2023

Calibrating with low vs high p_{T} hadrons

Raymond Ehlers (LBNL/UCB) - 26 September 2023

What's driving this behavior?

Full p_T range

- Low p_T dominates due to small exp. uncert.
- **High** *p*_T in line with jet data
- · Points to phase space for model improvement
- Theory uncertainty is critical!
 - eg. No shadowing included
- Small exp. uncertainty where theory has largest uncertainty

Jets and jet substructure

- What (additional) information do jet substructure observables contain?
- Further **insight into differences** in \hat{q} from hadron- and jet-only extractions?
- · Exploratory investigation with simplified but consistent error treatment
 - Focus on 0–10% central data
- Baseline: Jet R_{AA} only

Jet R_{AA}

• ALICE, ATLAS, CMS, STAR

Fragmentation: D(z)

- ATLAS: D(z)
- CMS: ξ(z)

Groomed jet substructure

• ALICE: R_{g} , z_{g}

Constraints on \hat{q}

- Consistent description of jet *R*_{AA} with substructure observables
- Substructure yield stronger relative constraint
- Low p_T inclusive hadrons show tension, low z jet fragmentation consistent...?

Additional approaches to information content

Observable sensitivity to posterior perturbation

JETSCAPE, PRC.103.054904

Information in N-subjettiness basis

Y.S. Lai et al, JHEP10(2022)011

Raymond Ehlers (LBNL/UCB) - 26 September 2023

- 1. Experiments should report signed uncertainties
 - Covariance matrix matters
 - Some are difficult, but many are straightforward
- 2. To generalize conclusions, need to include theory uncertainties
- 3. Inference can **extract and constrain parameters**, but can also use for **investigations**

Applying ML to experimental data

Applying machine learning for background subtraction

- Jets are experimentally challenging due to large uncorrelated background from underlying event
 - Fluctuations can be $\sim p_{\mathrm{T,jet}}$
- Usual approach is subtract median background + unfold for background fluctuations
- Can ML be used to reduce residual background fluctuations?
 - Utilize jet properties to train NN to subtract jet-by-jet background
 - **Issue: lack of ground truth model** to use for reliable training
 - Training introduces model dependent **fragmentation bias**

RJE, ALICE, arXiv:2303.00592

Varying fragmentation to assess the systematic uncertainty

· Estimate systematic uncertainty with physics inspired fragmentation toy model

Fractional In Cone

Fractional Out of Cone

Medium response

- Calibrate to available measurements in different parts of phase space
- Train new model on modified fragmentation, with difference taken as systematic uncertainty
- This is the dominant systematic, but such toys can be useful if nothing else suitable is available

- Bayesian inference is a powerful tool for understanding data and theory
- 2. Experiments should report signed uncertainties
- 3. Need to include **theory uncertainties** to generalize conclusions
- 4. Applying ML to experimental data often requires novel solutions
 - Physics inspired (toy) models can help

Backup

Practical Bayesian workflow

- Need to populate N-dim parameter space (N ~ 5)
- **High computational cost** for simulations
- Millions of cores hours provided by XSEDE (NSF)
- Interpolate between simulations using Gaussian Process Emulator

First JETSCAPE analysis of hard sector (2021)

Data

- Hadron R_{AA}
- 3 $\sqrt{s_{\rm NN}}$, 2 centralities per energy
- Treat experimental uncert. correlations where possible

Model

- Extract parametrized $\widehat{q}(T, E, Q)$
- Multistage: MATTER + LBT
- Goal: One step forward from JET results, **proof of concept for one unified** \hat{q} across $\sqrt{s_{NN}}$

JETSCAPE Framework

MC event generator package for heavy ion collisions

- General, modular and extensible
- Communication between modules
- Available on GitHub github.com/JETSCAPE

Posterior: hadron R_{AA} at low p_T

Raymond Ehlers (LBNL/UCB) - 26 September 2023

Posterior: hadron R_{AA} at high p_T

