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“Accelerating” Monte Carlo sampling for EIC physics

© Uncertainty quantification via Bayesian analysis

P(Y|w)P(w)

P@IY) = =5

Assisting continuous calibration of model parameters w via
normalizing flows

@ Lattice calculations

[ pexp(—So(9)) O()
O = T exp(—So()

Increasing effective sampling size via control variates
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Bayesian analysis with normalizing flows
Bayes theorem provides posterior distribution

Pw|Y) = ’W

How do we sample from P(w|Y)? Normally MCMC

Normalizing flow w = f(x) maps

N
dw P(w|Y) =N ][] dx; e /2
i=1

Some distribution Gaussian distribution
1.0 1
08 Map 08
06 H 0.6
os w = f(x) o4
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Mahcine-learned normalising flow

Find an approximate normalizing flow

N
N[ dxi e /2 = dw Q(w) ~ dw P(w]Y)
i=1

by optimizing parameters in the neural network
Real NVP (6 layers) + Scale&Shift

1. Prepare train data via MCMC i m Wi

3. Train via Jeffreys’ divergence .
LN N

D(P|Q) = [ dw (Plog 5 + Qlog ) .

ﬂ_
2. Initialize NN as a Gaussian fit o 4 = — T w
___ﬁ[:}_

@ ADAM with learning rate of 1073 JU I Iy
N

@ 1000 samples/train step R;al-—NVP sZaIe&shift
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2-dimentional examples
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Relativistic mean field model®

Calibrated by experimental binding energies and charge radii of nucleil
(160 40Ca 48Ca 68Ni QOZr IOOSn 1165n 1325n 1445m 208Pb)

A o @ ms: 0 meson mass

< »P ﬂ/\ @ po: saturation density

;i o= l6202ft @ ¢p: binding energy at po
S @ @' /\ —— @ M*: effective nucleon mass at pg
i: @ j\ e @ K: incompressibility at pg

fﬂ ; A @ J: value of symmetric energy at pg

; J @ /\ c=0024gt @ L: slope of symemtric energy at pg
v ef Q @ /\ R @ (: w meson quartic coupling
eeeees ) .

2 Black: MCMC, Red: NF
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All codes used in this work will become available at publication?

1P4 Giuliani, K. Godbey, et al., arXiv:2209.13039[nucl-th]
2YY, L. Buskirk, P. Giuliani, and K. Godbey, in preparation

W. Chen and J. Piekarewicz, arXiv:1408.4149
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Why normalizing flow? Why with machine learning?

: Distribution
Data quality Training platform

O parameters Error
o 0o O S
Data Training & Distribution

preparation Quantifcation & Utilization

Continuous Calibration

@ Neural network can parametrize a large family of functions efficiently.
e Normalizing flows serve as a compression tool for P(w|Y).

@ One can generate more samples easily, quickly, in parallel (including
reweighting).
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Next!

Improving the statistics in lattice calculations via control variates

For a given Monte Carlo sampling task in lattice simulations

/D¢l e>¥) O(9)
/ D[g] =)

(0) =

with bad

Signal-to-noise problem

How do we reduce the “noise”

Variance Var(O)
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Complex control variates

O =cosf + ¢ O—f=c¢

//T\\ = //ﬁ\\

The idea is very simple...
Subtract a function f from O!!

-10

Without changing physics, so
(O) = (O —f) but Var(O) > Var(O — f)

So we strictly impose

() = [ DI} 5 £(9) =0
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Notes on control variates

Strength of control variates

e Can be applied to any (including discrete) lattice theories

@ Good (or even perfect) control variates always exist

How do we find good control variates?

1. Analytical (perturbative) approaches

e S. Lawrence, arXiv:2009.10901[hep-lat]

e S. Lawrence and YY, arXiv:2212.14606 [hep-lat]
2. Numerical approaches

@ Start with ansatz and optimize

@ Machine learning
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Demonstration: Classical Ising model (Lee-Yang zeros)

Classical Ising model: 5(5) = —J 32 5y sisi — h32;si
Lee-Yang Theorem: the partition function is 0 only on with imaginary h.

Goal: Compute Z =3, e~5 at purely imaginary magnetic field

Measure
Z(h) _ Zs exp (J Z(i,j) S,‘Sj) exp(h Zf 5,-)
Z(h=0) ZS exp (J Z(i,j) S,'Sj)

= <ehZisi>Q
By replacing
eh2isi 5 eh2s _cv

and optimize CV to minimize

Var (ehzis" — CV)
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Extreme learning machine
1. Prepare basis functions

{Zs,cos(z s),sin(z s)} x sx S(h=0)"

(0<n<3)

2. Input basis functions to ELM
3. Take “divergence”

Fi=f(si) — f(—si)
4. The CV =3 ciF;

The coefficients ¢; are optimized by
estimating

M; = (FiFj). s = (OF)

() Activation

\/: Differentiation

and
c=M1lvy
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Classical Ising model*
At purely imaginary h, J = 0.4 < J. =~ 0.441, 8 x 8 lattice:

10 ‘ . : . . : ‘
08 | {  Raw [
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02}
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Error

0.00 0.05 0.10 0.15 0.20 025 030 0.35
Magnetic field strength (imaginary)

@ Raw: 5k samples for Z

@ VR: 5k samples to optimize, 5k samples for Z

*S. Lawrence and YY, in preparation
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Scaler field theory®

Lattice scalar ¢* theory in Euclidean

r—a(r'))? m
S= E(r,r/) M + Zr [72¢2(r) =+ ﬁ¢4(r)]
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24 x 24 lattice, m* = 0.0\ =2.0

5T. Bhattacharya, S. Lawrence, and J. Yoo, arXiv:2307.14950 [hep-lat]
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Thirring model in 1 + 1-dimension at finite density °

S=>u é (1 —cosAy(x)) —logdet K, A, € [0,27)

with the Dirac matrix (19 = (—1)%» and 7, = (—1)*)

1 iA, 5 —iAL(y)— b,
K[Alyy = mdx, + 3 ZV:071 e bt O0xtvy — M€ 0)=uduo y+v,x

0.6
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o8l . ¢ Subtracted oall & Subtracted o |
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Average sign Density

4 x 4 lattice, m=0.05,g = 1.0 » mg = 0.33(1), mg = 0.35(2)
6S. Lawrence and YY, arXiv:2212.14606 [hep-lat]
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Future

Bayesian analysis via NF Lattice control variates
o Efficient training algorithms @ Application to LQCD
e Continuous calibration e Towards sign problems

Collaborators (?)

Landon Buskirk  Pablo Giuliani Kyle Godbey  Scott Lawrence

15/15



BACK UP

Could you use this as the
photo that identifies me?
You can screen shot this
what's app text if you want to
offer proof that | want to be

portrayed by my dog @

1:26 PM

15/15



