Accelerated Monte Carlo methods from machine learning

Yukari Yamauchi

- arXiv:2310.xxxxx with Landon Buskirk, Pablo Giuliani, Kyle Godbey
- arXiv:2310.xxxx with Scott Lawrence

September 26th, 2023

Workshop: Probing the Frontiers of Nuclear Physics with AI at the EIC

"Accelerating" Monte Carlo sampling for EIC physics

Uncertainty quantification via Bayesian analysis

$$extsf{P}(oldsymbol{\omega} | oldsymbol{Y}) = rac{P(oldsymbol{Y} | oldsymbol{\omega}) P(oldsymbol{\omega})}{P(oldsymbol{Y})}$$

Assisting continuous calibration of model parameters $\boldsymbol{\omega}$ via normalizing flows

2 Lattice calculations

$$\langle \mathcal{O} \rangle = \frac{\int \phi \exp(-S_0(\phi)) \ \mathcal{O}(\phi)}{\int_{\phi} \exp(-S_0(\phi))}$$

Increasing effective sampling size via control variates

Bayesian analysis with normalizing flows Bayes theorem provides posterior distribution

$$P(\omega|oldsymbol{Y}) = rac{P(oldsymbol{Y}|\omega)P(\omega)}{P(oldsymbol{Y})}$$

How do we sample from $P(\boldsymbol{\omega}|\boldsymbol{Y})$? Normally MCMC

Normalizing flow $\omega = f(\mathbf{x})$ maps

$$d\boldsymbol{\omega} \ P(\boldsymbol{\omega}|\mathbf{Y}) = \mathcal{N} \prod_{i=1}^{N} dx_i \ e^{-x_i^2/2}$$

Mahcine-learned normalising flow

Find an approximate normalizing flow

$$\mathcal{N}\prod_{i=1}^{N}dx_{i} \ e^{-x_{i}^{2}/2} = d\omega \ Q(\omega) \approx d\omega \ P(\omega|\mathbf{Y})$$

by optimizing parameters in the neural network Real NVP (6 layers) + Scale&Shift

- 1. Prepare train data via MCMC
- 2. Initialize NN as a Gaussian fit
- 3. Train via Jeffreys' divergence

$$D(P|Q) = \int d \omega \left(ilde{P} \log rac{P}{Q} + ilde{Q} \log rac{Q}{P}
ight)$$

- ADAM with learning rate of 10^{-3}
- 1000 samples/train step

2-dimentional examples

blue: exact, black: train data, red: from normalizing flow

Relativistic mean field model³

Calibrated by experimental binding energies and charge radii of nuclei¹ (16 O, 40 Ca, 48 Ca, 68 Ni, 90 Zr, 100 Sn, 116 Sn, 132 Sn, 144 Sm, 208 Pb)

All codes used in this work will become available at publication²

¹P. Giuliani, K. Godbey, et al., arXiv:2209.13039[nucl-th]
 ²YY, L. Buskirk, P. Giuliani, and K. Godbey, in preparation
 ³W. Chen and J. Piekarewicz, arXiv:1408.4149

Why normalizing flow? Why with machine learning?

- Neural network can parametrize a large family of functions efficiently.
- Normalizing flows serve as a compression tool for $P(\boldsymbol{\omega}|\boldsymbol{Y})$.
- One can generate more samples easily, quickly, in parallel (including reweighting).

Next!

Improving the statistics in lattice calculations via control variates

For a given Monte Carlo sampling task in lattice simulations

$$\langle \mathcal{O} \rangle = rac{\int \mathcal{D}[\phi] \; e^{-S(\phi)} \; \mathcal{O}(\phi)}{\int \mathcal{D}[\phi] \; e^{-S(\phi)}}$$

with bad

Signal-to-noise problem

How do we reduce the "noise"

Variance $Var(\mathcal{O})$

Complex control variates

The idea is very simple...

Subtract a function f from O!!

Without changing physics, so

$$\langle \mathcal{O} \rangle = \langle \mathcal{O} - f \rangle$$
 but $\operatorname{Var}(\mathcal{O}) > \operatorname{Var}(\mathcal{O} - f)$

So we strictly impose

$$\langle f \rangle = \int \mathcal{D}[\phi] \ e^{-S(\phi)} \ f(\phi) = 0$$

Notes on control variates

Strength of control variates

- Can be applied to any (including discrete) lattice theories
- Good (or even perfect) control variates always exist

How do we find good control variates?

- 1. Analytical (perturbative) approaches
 - S. Lawrence, arXiv:2009.10901[hep-lat]
 - S. Lawrence and YY, arXiv:2212.14606 [hep-lat]
- 2. Numerical approaches
 - Start with ansatz and optimize
 - Machine learning

Demonstration: Classical Ising model (Lee-Yang zeros)

Classical Ising model:
$$S(\vec{s}) = -J \sum_{\langle i,j \rangle} s_i s_j - h \sum_i s_i$$

Lee-Yang Theorem: the partition function is **0** only on with imaginary *h*. Goal: Compute $Z = \sum_{s} e^{-S}$ at **purely imaginary magnetic field** Measure

$$\frac{Z(h)}{Z(h=0)} = \frac{\sum_{s} \exp\left(J \sum_{\langle i,j \rangle} s_{i}s_{j}\right) \exp\left(h \sum_{i} s_{i}\right)}{\sum_{s} \exp\left(J \sum_{\langle i,j \rangle} s_{i}s_{j}\right)} = \langle e^{h \sum_{i} s_{i}} \rangle_{Q}$$

By replacing

$$\mathrm{e}^{h\sum_i s_i}
ightarrow \mathrm{e}^{h\sum_i s_i} - \mathsf{CV}$$

and optimize CV to minimize

$$\operatorname{Var}\left(e^{h\sum_{i}s_{i}}-\mathsf{CV}\right)$$

Extreme learning machine

1. Prepare basis functions

$$\left\{\sum s, \cos(\sum s), \sin(\sum s)\right\} \times s \times S(h=0)^n$$

 $n \leq 3$)

- 2. Input basis functions to ELM
- 3. Take "divergence"

$$F_i = f(s_i) - f(-s_i)$$

4. The $CV = \sum_i c_i F_i$

The coefficients c_i are optimized by estimating

$$M_{ij} = \langle F_i F_j \rangle, v_j = \langle \mathcal{O} F_i \rangle$$

and

 $(0 \leq$

$$c = M^{-1} v$$

Classical Ising model⁴

At purely imaginary $h, J = 0.4 < J_c \approx 0.441, 8 \times 8$ lattice:

- Raw: 5k samples for Z
- VR: 5k samples to optimize, 5k samples for Z

 $^{^{4}}S$. Lawrence and **YY**, in preparation

Scaler field theory⁵

Lattice scalar ϕ^4 theory in Euclidean

$$S = \sum_{\langle r,r' \rangle} \frac{(\phi(r) - \phi(r'))^2}{2} + \sum_r \left[\frac{m^2}{2} \phi^2(r) + \frac{\lambda}{24} \phi^4(r) \right]$$

Thirring model in 1 + 1-dimension at finite density ⁶

$$\begin{split} S &= \sum_{x,\nu} \frac{2}{g^2} \left(1 - \cos A_{\nu}(x) \right) - \log \det K, A_{\nu} \in [0, 2\pi) \\ \text{with the Dirac matrix } (\eta_0 &= (-1)^{\delta_{0,x_0}} \text{ and } \eta_1 &= (-1)^{x_0}) \\ K[A]_{xy} &= m \delta_{xy} + \frac{1}{2} \sum_{\nu=0,1} \eta_{\nu} e^{iA_{\nu}(x) + \mu \delta_{\nu,0}} \delta_{x+\nu,y} - \eta_{\nu} e^{-iA_{\nu}(y) - \mu \delta_{\nu,0}} \delta_{y+\nu,x} \end{split}$$

 4×4 lattice, $m = 0.05, g = 1.0 \rightarrow m_B = 0.33(1), m_F = 0.35(2)$

⁶S. Lawrence and **YY**, arXiv:2212.14606 [hep-lat]

Future

Bayesian analysis via NF

- Efficient training algorithms
- Continuous calibration

Lattice control variates

- Application to LQCD
- Towards sign problems

Collaborators (?)

Landon Buskirk

Pablo Giuliani

Kyle Godbey

Scott Lawrence

BACK UP

Pablo Giuliani

Could you use this as the photo that identifies me? You can screen shot this what's app text if you want to offer proof that I want to be portrayed by my dog by

