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“Accelerating” Monte Carlo sampling for EIC physics

1 Uncertainty quantification via Bayesian analysis

P(ω|Y ) = P(Y |ω)P(ω)
P(Y )

Assisting continuous calibration of model parameters ω via
normalizing flows

2 Lattice calculations

〈O〉 =
∫
φ exp(−S0(φ)) O(φ)∫

φ exp(−S0(φ))

Increasing effective sampling size via control variates
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Bayesian analysis with normalizing flows
Bayes theorem provides posterior distribution

P(ω|Y ) = P(Y |ω)P(ω)
P(Y )

How do we sample from P(ω|Y )? Normally MCMC

Normalizing flow ω = f (x) maps

dω P(ω|Y ) = N
N∏

i=1
dxi e−x2

i /2

Some distribution
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Mahcine-learned normalising flow
Find an approximate normalizing flow

N
N∏

i=1
dxi e−x2

i /2 = dω Q(ω) ≈ dω P(ω|Y )

by optimizing parameters in the neural network
Real NVP (6 layers) + Scale&Shift

1. Prepare train data via MCMC

2. Initialize NN as a Gaussian fit

3. Train via Jeffreys’ divergence

D(P|Q) =
∫

dω
(
P̃ log P

Q + Q̃ log Q
P

)
Adam with learning rate of 10−3

1000 samples/train step Real-NVP scale&shift
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2-dimentional examples

blue: exact, black: train data, red: from normalizing flow
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Relativistic mean field model3
Calibrated by experimental binding energies and charge radii of nuclei1
(16O, 40Ca, 48Ca, 68Ni, 90Zr, 100Sn, 116Sn, 132Sn, 144Sm, 208Pb)

ms : σ meson mass
ρ0: saturation density
ε0: binding energy at ρ0
M∗: effective nucleon mass at ρ0
K : incompressibility at ρ0
J: value of symmetric energy at ρ0
L: slope of symemtric energy at ρ0
ζ: ω meson quartic coupling

Black: MCMC, Red: NF

All codes used in this work will become available at publication2

1P. Giuliani, K. Godbey, et al., arXiv:2209.13039[nucl-th]
2YY, L. Buskirk, P. Giuliani, and K. Godbey, in preparation
3W. Chen and J. Piekarewicz, arXiv:1408.4149
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Why normalizing flow? Why with machine learning?

Neural network can parametrize a large family of functions efficiently.
Normalizing flows serve as a compression tool for P(ω|Y ).
One can generate more samples easily, quickly, in parallel (including
reweighting).
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Next!
Improving the statistics in lattice calculations via control variates

For a given Monte Carlo sampling task in lattice simulations

〈O〉 =
∫
D[φ] e−S(φ) O(φ)∫
D[φ] e−S(φ)

with bad

Signal-to-noise problem

How do we reduce the “noise”

Variance Var(O)
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Complex control variates

O = cos θ + ε
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The idea is very simple...

Subtract a function f from O!!

Without changing physics, so

〈O〉 = 〈O − f 〉 but Var(O) > Var(O − f )

So we strictly impose

〈f 〉 =
∫
D[φ] e−S(φ) f (φ) = 0
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Notes on control variates

Strength of control variates
Can be applied to any (including discrete) lattice theories
Good (or even perfect) control variates always exist

How do we find good control variates?

1. Analytical (perturbative) approaches
S. Lawrence, arXiv:2009.10901[hep-lat]
S. Lawrence and YY, arXiv:2212.14606 [hep-lat]

2. Numerical approaches
Start with ansatz and optimize
Machine learning
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Demonstration: Classical Ising model (Lee-Yang zeros)

Classical Ising model: S(~s) = −J
∑
〈i ,j〉 sisj − h

∑
i si

Lee-Yang Theorem: the partition function is 0 only on with imaginary h.

Goal: Compute Z =
∑

s e−S at purely imaginary magnetic field

Measure
Z(h)

Z(h=0) =
∑

s exp
(

J
∑
〈i,j〉 si sj

)
exp(h

∑
i si)∑

s exp
(

J
∑
〈i,j〉 si sj

) = 〈eh
∑

i si 〉Q

By replacing

eh
∑

i si → eh
∑

i si − CV

and optimize CV to minimize

Var
(
eh
∑

i si − CV
)
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Extreme learning machine
1. Prepare basis functions{∑

s, cos(
∑

s), sin(
∑

s)
}
× s × S(h = 0)n

(0 ≤ n ≤ 3)

2. Input basis functions to ELM

3. Take “divergence”

Fi = f (si)− f (−si)

4. The CV =
∑

i ciFi

The coefficients ci are optimized by
estimating

Mij = 〈FiFj〉, vj = 〈OFi〉

and
c = M−1 v
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Classical Ising model4
At purely imaginary h, J = 0.4 < Jc ≈ 0.441, 8× 8 lattice:

Raw: 5k samples for Z
VR: 5k samples to optimize, 5k samples for Z

4S. Lawrence and YY, in preparation
12 / 15



Scaler field theory5
Lattice scalar φ4 theory in Euclidean

S =
∑
〈r ,r ′〉

(φ(r)−φ(r ′))2
2 +

∑
r

[
m2

2 φ
2(r) + λ

24φ
4(r)

]

24 × 24 lattice, m2 = 0.0, λ = 2.0
5T. Bhattacharya, S. Lawrence, and J. Yoo, arXiv:2307.14950 [hep-lat]
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Thirring model in 1 + 1-dimension at finite density 6

S =
∑

x ,ν
2
g2 (1− cos Aν(x))− log det K ,Aν ∈ [0, 2π)

with the Dirac matrix (η0 = (−1)δ0,x0 and η1 = (−1)x0)
K [A]xy = mδxy + 1

2
∑
ν=0,1 ηνe iAν(x)+µδν,0δx+ν,y − ηνe−iAν(y)−µδν,0δy+ν,x

Average sign Density
4 × 4 lattice, m = 0.05, g = 1.0→ mB = 0.33(1),mF = 0.35(2)

6S. Lawrence and YY, arXiv:2212.14606 [hep-lat]
14 / 15



Future

Bayesian analysis via NF
Efficient training algorithms
Continuous calibration

Lattice control variates
Application to LQCD
Towards sign problems

Collaborators (?)

Landon Buskirk Pablo Giuliani Kyle Godbey Scott Lawrence
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