Is IRC-safe information all you need for jet classification?

Dimitrios Athanasakos

arXiv: 2305.08979 w/ Andrew J. Larkoski, James Mulligan, Mateusz Płoskoń, Felix Ringer

CFNS, AI at the EIC

Outline

- Jet Classification and IRC-Safety
- 2 Jet Flow Network (JFN)
- Operation of the second sec
- 4 Conclusion

æ

イロト イ団ト イヨト イヨト

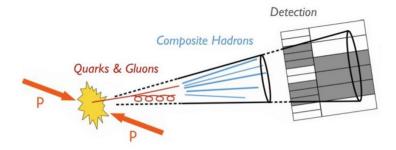
Table of Contents

- Jet Classification and IRC-Safety
 - 2 Jet Flow Network (JFN)
 - 3 Physical Scales
 - 4 Conclusion
 - 5 Future Work

æ

イロト イ団ト イヨト イヨト

One of the biggest challenges of collider phenomenology is Jet Classification



イロト イヨト イヨト イヨト

æ

na: na: na: Images Trees Sequences Variable sets Graphs

There are many ways to represent a jet

Figure: Taken from Larkoski et al 1709.04464

イロト イヨト イヨト イヨト

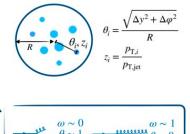
æ

We are free to construct any observable from the jet's constituents

e.g.
$$\lambda_{\alpha}^{\kappa} = \sum_{i \in jet} z_i^{\kappa} \theta_i^{\alpha}$$

However, usually only those combinations that obey **infrared-collinear (IRC) safety** _____ are calculable in perturbative QCD

e.g.
$$\lambda_{\alpha>0}^{\kappa=1} = \sum_{i \in jet} z_i \theta_i^{\alpha}$$



Insensitive to soft/collinear emissions

イロト イヨト イヨト

Architectures that use IRC unsafe information (PFN, ParticleNet etc) perform better than IRC safe classifiers (EFN, EFP, Nsub)

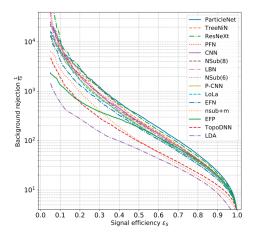


Figure: Taken from Kasieczka et al 1902.09914

Dimitrios Athanasakos

Is IRC-safe info. all you need for jet classification?

Deep Sets

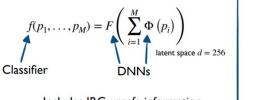
Permutation-invariant neural networks based on deep sets

Unordered, variable-length sets of particles as input

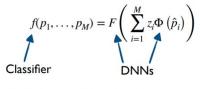
Komiske, Metodiev, Thaler JHEP 01 (2019) 121

Zaheer et al. 1703.06114 Wagstaff et al. 1901.09006 Bloem-Reddy, Teh JMLR 21 90 (2020)

Particle Flow Network (PFN)



Energy Flow Network (EFN)



Includes only IRC-safe information

イロト イヨト イヨト イヨト

Includes IRC-unsafe information

Deep Sets

PFN performs amazingly well and almost matches the state of the art performance

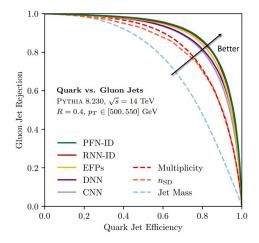


Figure: Taken from Thaler et al 1810.05165

・ロット 4 回 > 4 回 > 4

Interpretability

PFN is IRC unsafe, sensitive to non perturbative physics and it has 3N variables where N is the number of hadrons Increase interpretability by connecting it to Sudakov/IRC safe observables and by cutting down the input's size

Table of Contents

Jet Classification and IRC-Safety

2 Jet Flow Network (JFN)

Physical Scales

4 Conclusion

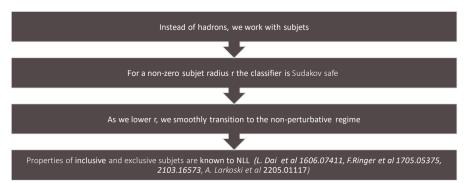
5 Future Work

æ

< □ > < □ > < □ > < □ > < □ >

JFN

Jet Flow Network (JFN)



	PFN	JFN	EFN
Input	particle 3-momenta	subjet 3-momenta	particle 3-momenta
Classifier	IRC unsafe	Sudakov safe	IRC safe

æ

イロト イヨト イヨト イヨト

Jet Flow Network (JFN)

JFN

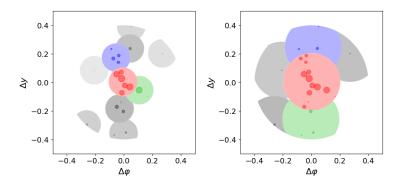
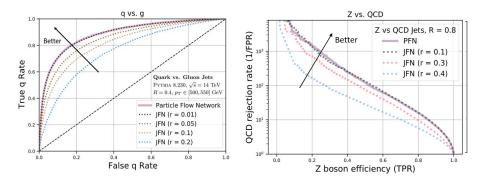


Figure: A QCD jet with $p_T = 100$ GeV, R = 0.4 reclustered into subjets for subjet radii r = 0.1 (left), r = 0.2 (right). The radii of the particles represent their p_T . Leading subjet: red. Second leading subjet: green. Third leading subjet: blue.

イロト イヨト イヨト イ

JFN

As we lower r JFN converges to PFN



< □ > < □ > < □ > < □ > < □ >

æ

Table of Contents

Jet Classification and IRC-Safety

2 Jet Flow Network (JFN)

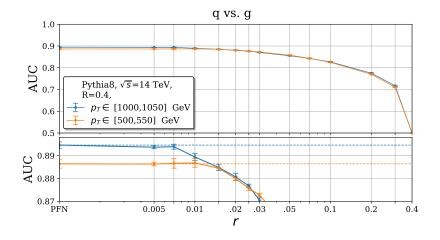
O Physical Scales

5 Future Work

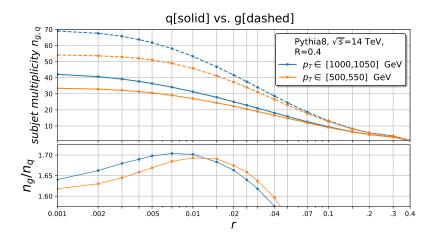
æ

< □ > < □ > < □ > < □ > < □ >

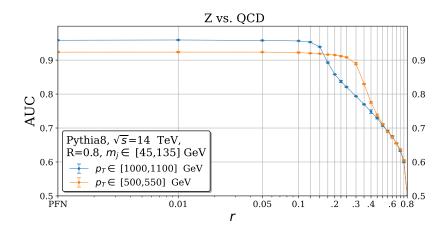
At what r do we expect a decrease in performance ?



The critical scale is not the hadronization scale $\sim 0.5~GeV$. It corresponds to $p_T \cdot r \sim 5~GeV$



Z vs QCD Discrimination



イロト イヨト イヨト

What happens at this scale ?

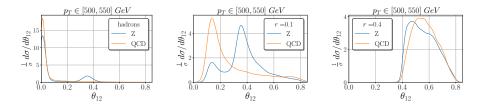
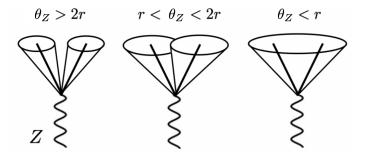


Figure: The distribution of the angle θ in the (η, ϕ) plane between the two leading hadrons (left plot) and the two leading subjets (center and right plot).

< □ > < □ > < □ > < □ > < □ >

æ

We do not lose classification power as long as we resolve the two leading subjets that originate from the Z splitting: $\theta_Z \approx \frac{2M_Z}{p_T}$



イロト イヨト イヨト イヨト

Table of Contents

- Jet Classification and IRC-Safety
- 2 Jet Flow Network (JFN)
- 3 Physical Scales
- 4 Conclusion

5) Future Work

æ

< □ > < □ > < □ > < □ > < □ >

In conclusion:

• Jet Flow Network is a Sudakov Safe classifier

イロト イヨト イヨト イヨト

2

In conclusion:

- Jet Flow Network is a Sudakov Safe classifier
- The first classifier based on IRC safe information that matches the performance of an IRC-unsafe one with the same expressive power

In conclusion:

- Jet Flow Network is a Sudakov Safe classifier
- The first classifier based on IRC safe information that matches the performance of an IRC-unsafe one with the same expressive power
- Increased interpretability (fewer variables, connections to pQCD)

(日)

In conclusion:

- Jet Flow Network is a Sudakov Safe classifier
- The first classifier based on IRC safe information that matches the performance of an IRC-unsafe one with the same expressive power
- Increased interpretability (fewer variables, connections to pQCD)
- Decreased dependency to Monte Carlo Hadronization Models (improved robustness?)

Table of Contents

- Jet Classification and IRC-Safety
- 2 Jet Flow Network (JFN)
- 3 Physical Scales
- 4 Conclusion

æ

< □ > < □ > < □ > < □ > < □ >

• JFN is an important step towards increasing the interpretability of a Jet Classifier without sacrificing on the performance.

< □ > < □ > < □ > < □ > < □ >

- JFN is an important step towards increasing the interpretability of a Jet Classifier without sacrificing on the performance.
- That was achieved by using (p_T,η,ϕ) of subjets as input to a Deep Sets classifier.

イロト イ団ト イヨト イヨト

- JFN is an important step towards increasing the interpretability of a Jet Classifier without sacrificing on the performance.
- $\bullet\,$ That was achieved by using (p_T,η,ϕ) of subjets as input to a Deep Sets classifier.
- Can we do better?

• The η and ϕ of individual hadrons/subjets are not QCD observables, only the relative angles ΔR between them are.

< □ > < □ > < □ > < □ > < □ >

- The η and ϕ of individual hadrons/subjets are not QCD observables, only the relative angles ΔR between them are.
- For a configuration of N particles, the phase space is 3N 3 dimensional. We can split the phase space in N transverse momenta and 2N - 3 relative angles. (1704.08249, 2111.14589, 2008.06508)

- The η and ϕ of individual hadrons/subjets are not QCD observables, only the relative angles ΔR between them are.
- For a configuration of N particles, the phase space is 3N 3 dimensional. We can split the phase space in N transverse momenta and 2N - 3 relative angles. (1704.08249, 2111.14589, 2008.06508)
- Let's create a jet classifier where the input is a graph G = (V, E) with |V| = N, |E| = 2N 3 and $V, E \in \mathbb{R}$. In principle this graph contains all the necessary information to construct the phase space and the input features are all QCD observables.

イロト イポト イヨト イヨト

- The η and ϕ of individual hadrons/subjets are not QCD observables, only the relative angles ΔR between them are.
- For a configuration of N particles, the phase space is 3N 3 dimensional. We can split the phase space in N transverse momenta and 2N - 3 relative angles. (1704.08249, 2111.14589, 2008.06508)
- Let's create a jet classifier where the input is a graph G = (V, E) with |V| = N, |E| = 2N 3 and $V, E \in \mathbb{R}$. In principle this graph contains all the necessary information to construct the phase space and the input features are all QCD observables.
- How easy is it to reconstruct the phase space ?

イロト イヨト イヨト イヨト

Lets consider a similar (and harder) problem

• Given a graph G = (V, E) with |V| = N and a set of non-negative edge-weights $\{w_{ij} : (i, j) \in E\}$. The vertices don't carry any information.

イロト イ団ト イヨト イヨト

Lets consider a similar (and harder) problem

- Given a graph G = (V, E) with |V| = N and a set of non-negative edge-weights $\{w_{ij} : (i, j) \in E\}$. The vertices don't carry any information.
- Can we find a realization of G in $\mathbb{R}^2,$ i.e. can we calculate the distances between every pair of vertices ?

Lets consider a similar (and harder) problem

- Given a graph G = (V, E) with |V| = N and a set of non-negative edge-weights $\{w_{ij} : (i, j) \in E\}$. The vertices don't carry any information.
- Can we find a realization of G in $\mathbb{R}^2,$ i.e. can we calculate the distances between every pair of vertices ?

NO

• In order to have a unique realization we need $|E| \ge 2N - 2$ (Global Rigidity in \mathbf{R}^2)

イロト イヨト イヨト イヨト

æ

- In order to have a unique realization we need $|E| \ge 2N-2$ (Global Rigidity in \mathbf{R}^2)
- Even then, this is an NP-hard problem (Graph Realization Problem)

イロト イ団ト イヨト イヨト

- In order to have a unique realization we need $|E| \ge 2N 2$ (Global Rigidity in \mathbf{R}^2)
- Even then, this is an NP-hard problem (Graph Realization Problem)
- The best we can do with |E| = 2N 3 is Laman Graphs, which are graphs that have only finitely many realizations.

< □ > < □ > < □ > < □ > < □ >

- In order to have a unique realization we need $|E| \ge 2N 2$ (Global Rigidity in \mathbf{R}^2)
- Even then, this is an NP-hard problem (Graph Realization Problem)
- The best we can do with |E| = 2N 3 is Laman Graphs, which are graphs that have only finitely many realizations.
- Formally, a Laman graph is a graph on N vertices such that, for all k, every k-vertex subgraph has at most 2k-3 edges, and such that the whole graph has exactly 2N-3 edges.

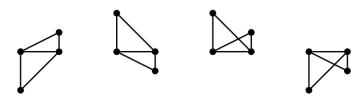


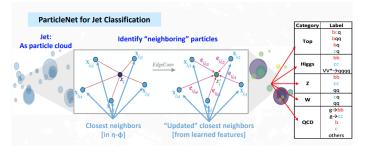
Figure: Realizations of a Laman graph with |V| = 4 up to rotations and translations.

イロト イヨト イヨト イヨト

27 / 35

Future Work

Preliminary Results with ParticleNet



Variable	Definition	
$\Delta \eta$	difference in pseudorapidity between the particle and the jet axis	
$\Delta \phi$	difference in azimuthal angle between the particle and the jet axis	
$\log p_T$	logarithm of the particle's p_T	
$\log E$	logarithm of the particle's energy	
$\log \frac{p_T}{p_T(\text{jet})}$	logarithm of the particle's p_T relative to the jet p_T	
$\log \frac{p_T}{p_T(\text{jet})}$ $\log \frac{E}{E(\text{jet})}$	logarithm of the particle's energy relative to the jet energy	
ΔR	angular separation between the particle and the jet axis $(\sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$	

Figure: Input Variables to Particle Net

イロト イヨト イヨト イヨト

Preliminary Results with ParticleNet

By forcing the ParticleNet to use Laman Graphs we can almost match the full performance, even though the input is 3N-3 dimensional compared to 21N dimensional.

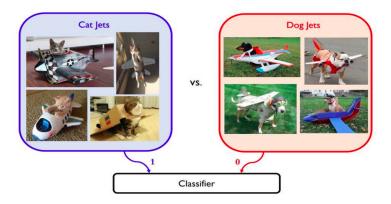
Model	AUC q vs g
ParticleNet Lite $k = (7,7)$	0.8989
Laman Graphs $k = (2,7)$	0.8983
ParticleNet Lite $k = (2,7)$	0.8976
PFN	0.8910

Table:

AUC of different classifiers on the q vs. g discrimination task. $k = (k_1, k_2)$ refers to the number of nearest neighbors for the two convolutional layers of the architecture.

・ロト ・ 同ト ・ ヨト ・ ヨト

Thank you!



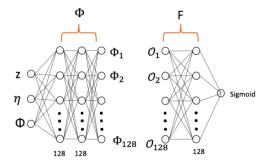
ヘロン 人間 とくほど 人間と

30 / 35

э.

Back up

PFN: $F\left(\sum_{i=1}^{M} \Phi(p_i)\right)$

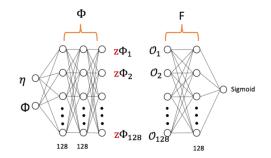


Where
$$\mathcal{O}_a = \sum_i \Phi(z_i, \eta_i, \phi_i)$$

2

Back up

EFN: $F\left(\sum_{i=1}^{M} z_i \Phi(\hat{p}_i)\right)$

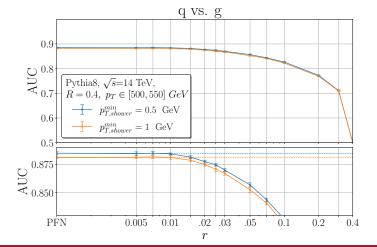


Where
$$\mathcal{O}_a = \sum_i z_i \Phi(\eta_i, \phi_i)$$

æ

Back up

The location of the critical scale is independent of the $p_{T,shower}^{min}$ of Pythia



Dimitrios Athanasakos

Is IRC-safe info. all you need for jet classification?

æ

33 / 35

Back up

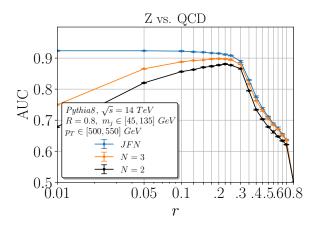


Figure: AUC of the JFNs for QCD vs. Z jets trained on the full information (inclusive subjets) compared to deep sets trained only on the two or three leading subjets. ・ロト ・ 日 ・ ・ ヨ ・ ・

æ

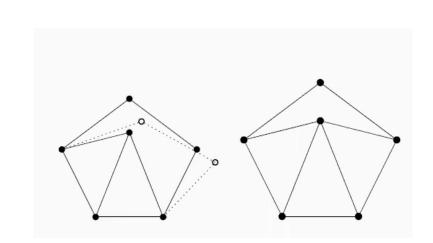


Figure: The left graph has infinitely many realizations. The right one is a Laman graph with only two realizations.

2

< □ > < □ > < □ > < □ > < □ >