Covariant Extension of Generalized Parton Distributions using Artificial Neural Networks

Collaborators: J. M. Morgado, J. Rodríguez Quintero, C. Mezrag, P. Sznajder

Probing the Frontiers of Nuclear Physics with AI at the EIC 26 Sept 2023

Pietro Dall'Olio

- Generalized Parton Distributions
- Covariant Extension via Radon Transform (RT) inversion
- RT inversion using Artificial Neural Networks
- Results on analytical models
- Conclusions and outlook

Generalized Parton Distribution (GPD)

Exclusive processes (DVCS)

Factorization of the amplitude

$$\mathcal{M}(\xi,t;Q^2) = \sum_{p=q,g} \int_{-1}^{1} \frac{dx}{\xi} K^p \left(\frac{x}{\xi}, \frac{Q^2}{\mu_F^2}, \alpha_s(\mu_F)\right) \mathcal{H}^p \left(x,\xi,t;\mu_F\right) + O(1/Q^2)$$

hard / perturbative

soft / non perturbative GPD

Ex: Chiral even twist-2 operators

Nucleon quark GPD

$$\begin{aligned} \mathscr{H}^{q}(x,\xi,t) &= \frac{1}{2} \int dz^{-} e^{ixP^{+}z^{-}} \langle P + \Delta/2 | \bar{\psi}^{q}(-z/2)\gamma^{+}\psi^{q}(z/2) | P - \Delta/2 \rangle \Big|_{z^{+}=z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t)\bar{u}(p')\gamma^{+}u(p) + E^{q}(x,\xi,t)\bar{u}(p')\frac{i\sigma^{+\mu}\Delta_{\mu}}{2M}u(p) \right] \\ &= \frac{1}{2P^{+}} \left[H^{g}(x,\xi,t)\bar{u}(p')\gamma^{+}u(p) + E^{g}(x,\xi,t)\bar{u}(p')\frac{i\sigma^{+\mu}\Delta_{\mu}}{2M}u(p) \right] \\ &= \frac{1}{2P^{+}$$

Nucleon gluon GPD

Ex: Chiral even twist-2 operators

Nucleon quark GPD

$$\begin{aligned} \mathscr{H}^{q}(x,\xi,t) &= \frac{1}{2} \int dz^{-} e^{ixP^{+}z^{-}} \langle P + \Delta/2 | \bar{\psi}^{q}(-z/2)\gamma^{+}\psi^{q}(z/2) | P - \Delta/2 \rangle \Big|_{z^{+}=z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t)\bar{u}(p')\gamma^{+}u(p) + E^{q}(x,\xi,t)\bar{u}(p')\frac{i\sigma^{+\mu}\Delta_{\mu}}{2M}u(p) \right] \\ &= \frac{1}{2P^{+}} \left[H^{g}(x,\xi,t)\bar{u}(p')\gamma^{+}u(p) + E^{g}(x,\xi,t)\bar{u}(p')\frac{i\sigma^{+\mu}\Delta_{\mu}}{2M}u(p) \right] \\ &= \frac{1}{2P^{+}$$

$$\begin{aligned} \tilde{\mathscr{H}}^{q}(x,\xi,t) &= \frac{1}{2} \int dz^{-} e^{ixP^{+}z^{-}} \left\langle P + \Delta/2 \left| \bar{\psi}^{q}(-z/2)\gamma^{+}\gamma^{5}\psi^{q}(z/2) \left| P - \Delta/2 \right\rangle \right|_{z^{+}=z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{q}(x,\xi,t)\bar{u}(p')\gamma^{+}\gamma^{5}u(p) + \tilde{E}^{q}(x,\xi,t)\bar{u}(p')\frac{\gamma^{5}\Delta^{+}}{2M}u(p) \right] \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{g}(x,\xi,t)\bar{u}(p')\gamma^{+}\gamma^{5}u(p) + \tilde{E}^{g}(x,\xi,t)\bar{u}(p')\frac{\gamma^{5}\Delta^{+}}{2M}u(p) \right]$$

quark GPD of spin zero hadron

$$H^{q}_{\pi}(x,\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi(P + \Delta/2) \left| \bar{\psi}^{q}(-z/2)\gamma^{+}\psi^{q}(z/2) \right| \pi(P - \Delta/2) \right\rangle \Big|_{z^{+}=0, \ z^{\perp}=0}$$

Nucleon gluon GPD

Ex: Chiral even twist-2 operators

Nucleon quark GPD

$$\begin{aligned} \mathscr{H}^{q}(x,\xi,t) &= \frac{1}{2} \int dz^{-} e^{ixP^{+}z^{-}} \langle P + \Delta/2 | \bar{\psi}^{q}(-z/2)\gamma^{+}\psi^{q}(z/2) | P - \Delta/2 \rangle \Big|_{z^{+}=z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t)\bar{u}(p')\gamma^{+}u(p) + E^{q}(x,\xi,t)\bar{u}(p')\frac{i\sigma^{+\mu}\Delta_{\mu}}{2M}u(p) \right] \\ &= \frac{1}{2P^{+}} \left[H^{g}(x,\xi,t)\bar{u}(p')\gamma^{+}u(p) + E^{g}(x,\xi,t)\bar{u}(p')\frac{i\sigma^{+\mu}\Delta_{\mu}}{2M}u(p) \right] \\ &= \frac{1}{2P^{+}$$

$$\begin{aligned} \tilde{\mathscr{H}}^{q}(x,\xi,t) &= \frac{1}{2} \int dz^{-} e^{ixP^{+}z^{-}} \left\langle P + \Delta/2 \left| \bar{\psi}^{q}(-z/2)\gamma^{+}\gamma^{5}\psi^{q}(z/2) \right| P - \Delta/2 \right\rangle \Big|_{z^{+}=z_{\perp}=0} \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{q}(x,\xi,t)\bar{u}(p')\gamma^{+}\gamma^{5}u(p) + \tilde{E}^{q}(x,\xi,t)\bar{u}(p')\frac{\gamma^{5}\Delta^{+}}{2M}u(p) \right] \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{g}(x,\xi,t)\bar{u}(p')\gamma^{+}\gamma^{5}u(p) + \tilde{E}^{g}(x,\xi,t)\bar{u}(p')\frac{\gamma^{5}\Delta^{+}}{2M}u(p) \right] \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{g}(x,\xi,t)\bar{u}(p)\gamma^{+}\gamma^{5}u(p) + \tilde{E}^{g}(x,\xi,t)\bar{u}(p)\gamma^{+}\gamma^{5}u(p) \right] \\ &= \frac{1}{2P^{+}} \left[\tilde{H}^{g}(x,\xi,t)\bar{u}(p)\gamma^{+}\gamma^{5}u(p) + \tilde{E}^{g}(x,\xi,t)\bar{u}(p)\gamma^{+}\gamma^{5}u(p) \right]$$

quark GPD of spin zero hadron

$$H_{\pi}^{q}(x,\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi(P + \Delta/2) \left| \bar{\psi}^{q}(-z/2)\gamma^{+}\psi^{q}(z/2) \right| \pi(P - \Delta/2) \right\rangle \Big|_{z^{+}=0, \ z^{\perp}=0}$$

Nucleon gluon GPD

No Wilson line in light-cone gauge $A^+ = 0$

DGLAP $|x| > |\xi|$

Emission/absorption quark (x > 0) or antiquark (x < 0)

ERBL $|x| < |\xi|$

Emission of quark/antiquark pair

- ξ -parity $H^{q}(x, -\xi, t) = H^{q}(x, \xi, t)$ Time inversion symmetry
- Polynomiality $\mathscr{A}_{m}(\xi,t) = \int_{-1}^{1} dx \, x^{m} H^{q}(x,\xi,t) = \sum_{k=0}^{m+1} C_{k,m}(t) \, \xi^{k} \quad \text{Lorentz symmetry}$ k even
- Positivity

$$\left|H^{q}(x,\xi,t=0)\right| \leq \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)} q\left(\frac{x-\xi}{1-\xi}\right)$$

• Form factors

$$\int_{-1}^{1} dx H^{q}(x,\xi,t) = F^{q}(t), \quad \int_{-1}^{1} dx \, x \, H^{q}(x,\xi,t) = F^{q}(t),$$

 $, t) = A^{q}(t) + \xi^{2}C^{q}(t)$

• Forward limit $H^{q}(x,0,0) = q(x)\theta(x) - \bar{q}(-x)\theta(-x)$

• Hadron 3D tomography

$$\rho^{q}(x,b_{\perp}) = \int \frac{d^{2}\Delta_{\perp}}{(2\pi)^{2}} e^{-ib_{\perp}\cdot\Delta_{\perp}}H^{q}(x,0,-\Delta_{\perp}^{2})$$

Probability density of finding a parton with longitudinal momentum fraction x and position b_{\perp} in the transverse plane.

• Forward limit $H^{q}(x,0,0) = q(x)\theta(x) - \bar{q}(-x)\theta(-x)$

• Hadron 3D tomography

$$\rho^{q}(x,b_{\perp}) = \int \frac{d^{2}\Delta_{\perp}}{(2\pi)^{2}} e^{-ib_{\perp}\cdot\Delta_{\perp}} H^{q}(x,0,-\Delta_{\perp}^{2})$$

It is hard to build GPDs from first principles that satisfy both positivity and polynomiality

Probability density of finding a parton with longitudinal momentum fraction x and position b_{\perp} in the transverse plane.

• Forward limit $H^{q}(x,0,0) = q(x)\theta(x) - \bar{q}(-x)\theta(-x)$

• Hadron 3D tomography

$$\rho^{q}(x,b_{\perp}) = \int \frac{d^{2}\Delta_{\perp}}{(2\pi)^{2}} e^{-ib_{\perp}\cdot\Delta_{\perp}}H^{q}(x,0,-\Delta_{\perp}^{2})$$

Truncation in Overlap representation of LCWF is consistent only in DGLAP region

$$H^{q}(x,\xi,t)\Big|_{|x|>|\xi|} = \sum_{N,\beta} \sqrt{1-\xi^{2}} \int [d\bar{x}]_{N} [d^{2}\bar{\mathbf{k}}_{\perp}]_{N} \delta(x)$$

Positivity is built in, but for polynomiality GPD must be extended to ERBL region

Probability density of finding a parton with longitudinal momentum fraction x and position b_{\perp} in the transverse plane.

- It is hard to build GPDs from first principles that satisfy both positivity and polynomiality
 - $(-\bar{x}_i)\psi^*_{N,\beta}(x_i^{out},\mathbf{k}_{i\perp}^{out})\psi_{N,\beta}(x_i^{in},\mathbf{k}_{i\perp}^{in})$

Is it possible to extend the GPD from DGLAP to ERBL preserving polynomiality?

Is it possible to extend the GPD from DGLAP to ERBL preserving polynomiality?

 $\left\langle P + \Delta/2 \left| \bar{\psi}(-z/2) \gamma_{\mu} \psi(z/2) \right| P - \Delta/2 \right\rangle \right|_{z^{2}=0} = \left[d\beta \, d\alpha e^{-i\beta(P \cdot z) + i\alpha \frac{\Delta \cdot z}{2}} \left[2P_{\mu} f(\beta, \alpha, t) - \Delta_{\mu} g(\beta, \alpha, t) \right] \right]$

Is it possible to extend the GPD from DGLAP to ERBL preserving polynomiality?

$$\left\langle P + \Delta/2 \left| \bar{\psi}(-z/2) \gamma_{\mu} \psi(z/2) \right| P - \Delta/2 \right\rangle \Big|_{z^{2}=0} = \int d\beta \, d\alpha e^{-i\beta(P \cdot z) + i\alpha \frac{\Delta \cdot z}{2}} \left[2P_{\mu} f(\beta, \alpha, t) - \Delta_{\mu} g(\beta, \alpha, t) \right]$$

$$\Rightarrow H(x,\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P + \Delta/2 | \bar{\psi}(-z/2)\gamma^{+}\psi(z/2) | P - \Delta/2 \rangle \Big|_{z^{+}=z_{\perp}=0}$$
$$= \int_{\Omega} d\beta \, d\alpha \, \left(f(\beta,\alpha,t) + \xi \, g(\beta,\alpha,t) \right) \delta(x - \beta - \xi \alpha)$$

Is it possible to extend the GPD from DGLAP to ERBL preserving polynomiality?

$$\left\langle P + \Delta/2 \left| \bar{\psi}(-z/2)\gamma_{\mu}\psi(z/2) \right| P - \Delta/2 \right\rangle \Big|_{z^{2}=0} = \int d\beta \, d\alpha e^{-i\beta(P \cdot z) + i\alpha \frac{\Delta \cdot z}{2}} \left[2P_{\mu} f(\beta, \alpha, t) - \Delta_{\mu} g(\beta, \alpha, t) \right]$$

X

$$\Rightarrow H(x,\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P + \Delta/2 | \bar{\psi}(-z/2)\gamma^{+}\psi(z/2) | P - \Delta/2 \rangle \Big|_{z^{+}=z_{\perp}=0}$$
$$= \int_{\Omega} d\beta \, d\alpha \, \left(f(\beta,\alpha,t) + \xi \, g(\beta,\alpha,t) \right) \delta(x-\beta-\xi\alpha)$$

Radon transform

- Integral over line parametrized by x, ξ
- It guarantees polynomiality

Is it possible to extend the GPD from DGLAP to ERBL preserving polynomiality?

$$\left\langle P + \Delta/2 \left| \bar{\psi}(-z/2)\gamma_{\mu}\psi(z/2) \right| P - \Delta/2 \right\rangle \Big|_{z^{2}=0} = \int d\beta \, d\alpha e^{-i\beta(P \cdot z) + i\alpha \frac{\Delta \cdot z}{2}} \left[2P_{\mu} f(\beta, \alpha, t) - \Delta_{\mu} g(\beta, \alpha, t) \right]$$

$$\Rightarrow H(x,\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P + \Delta/2 | \bar{\psi}(-z/2)\gamma^{+}\psi(z/2) | P - \Delta/2 \rangle \Big|_{z^{+}=z_{\perp}=0}$$
$$= \int_{\Omega} d\beta \, d\alpha \, \left(f(\beta,\alpha,t) + \xi \, g(\beta,\alpha,t) \right) \delta(x-\beta-\xi\alpha)$$

Double Distributions (DD)

Not uniquely fixed

Radon transform

- Integral over line parametrized by x, ξ
- It guarantees polynomiality

$$H^{q}(x,\xi) = \mathscr{R}[h] = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) h(\beta,\xi)$$

line $\alpha = -\frac{\beta}{\xi} + \frac{x}{\xi}$

$$H^{q}(x,\xi) = \mathscr{R}[h] = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) h(\beta,\xi)$$

- Cannot be fixed by DGLAP data.
- Its DD has support only in $\beta = 0$
- Contribute only to $C_{m,m+1}(t)$

$$H^{q}(x,\xi) = \mathscr{R}[h] = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) h(\beta,\xi)$$

- Cannot be fixed by DGLAP data.
- Its DD has support only in $\beta = 0$
- Contribute only to $C_{m,m+1}(t)$

$$H^{q}(x,\xi) = \mathscr{R}[h] = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) h(\beta,\xi)$$

- Cannot be fixed by DGLAP data.
- Its DD has support only in $\beta = 0$
- Contribute only to $C_{m,m+1}(t)$

Is it possible to invert the Radon transform knowing the GPD only in DGLAP?

Is it possible to invert the Radon transform knowing the GPD only in DGLAP?

Answer from Computerized Tomography

$$\frac{\Delta I}{I} = f(x) \, dx$$
$$\frac{I_{out}}{I_{in}} [L] = \exp\left\{-\int_{L} f(x) \, dx\right\}$$

Fan-beam scanning

$$\mathscr{R}f(\theta, s) \equiv \int_{z \cdot \theta = s} dz f(z) \qquad f \in \mathscr{S}(\mathbb{R}^n),$$

GPD: $z \to (\beta, \alpha), \quad \theta \to (\cos(\phi), \sin(\phi)), \quad x = \frac{s}{\cos(\phi)}, \quad \xi = \tan(\phi)$

$$\mathscr{R}f(\theta,s) \equiv \int_{z\cdot\theta=s} dz f(z) \qquad f\in \mathscr{S}(\mathbb{R}^n),$$

GPD: $z \to (\beta, \alpha), \quad \theta \to (\cos(\phi), \sin(\phi)), \quad x = \frac{s}{\cos(\phi)}, \quad \xi = \tan(\phi)$

Uniqueness theorems:

[F. Natterer, *The Mathematics of Computerized Tomography*]

Given $f \in \mathcal{S}(\mathbb{R}^n)$, if $\Re f(\theta, s) = 0 \quad \forall$ hyperp convex set $K \subset \mathbb{R}^n \Rightarrow f(z) = 0$ outside K

Given $f \in S(\mathbb{R}^n)$, if $\Re f(\theta, s) = 0$ \forall hyperplane $z \cdot \theta = s$ that does not intersect a compact

$$\mathscr{R}f(\theta, s) \equiv \int_{z \cdot \theta = s} dz f(z) \qquad f \in \mathscr{S}(\mathbb{R}^n),$$

GPD: $z \to (\beta, \alpha), \quad \theta \to (\cos(\phi), \sin(\phi)), \quad x = \frac{s}{\cos(\phi)}, \quad \xi = \tan(\phi)$

Uniqueness theorems:

[F. Natterer, *The Mathematics of Computerized Tomography*]

convex set $K \subset \mathbb{R}^n \Rightarrow f(z) = 0$ outside K

DD is uniquely fixed by GPD in DGLAP (except for $\beta = 0$)

Given $f \in S(\mathbb{R}^n)$, if $\Re f(\theta, s) = 0$ \forall hyperplane $z \cdot \theta = s$ that does not intersect a compact

J. Boman and E.T. Quinto, Mathematical Journal 55 (1987)

Given f in \mathbb{R}^2 compactly-supported and locally summable, $(\theta_0, s_0) \in S^1 \times \mathbb{R}$, U_0 open neighborhood of θ_0 :

 $\Re f(\theta, s) = 0 \quad \forall s > s_0, \ \theta \in U_0 \quad \Rightarrow f(z) = 0 \quad \text{if } z \cdot \theta_0 > s_0$

J. Boman and E.T. Quinto, Mathematical Journal 55 (1987)

Given f in \mathbb{R}^2 compactly-supported and locally summable, $(\theta_0, s_0) \in S^1 \times \mathbb{R}$, U_0 open neighborhood of θ_0 :

 $\mathscr{R}f(\theta,s) = 0 \quad \forall s > s_0, \ \theta \in U_0 \implies f(z)$

DD is uniquely fixed (except for $\beta = 0$) by knowing GPD in: $x \in [-1,1], \xi \in [0,\lambda x], 0 < \lambda \le 1$

In experiments $\xi \leq 0.2$

$$z) = 0 \quad if \ z \cdot \theta_0 > s_0$$

(H. Moutarde)

Numerical Inversion of Radon Transform

Artificial Neural Networks

H. Dutrieux et al. Eur.Phys.J.C. 82 (2022)

Finite Elements Methods

N. Chouika et al. *Eur.Phys.J.C.* 77 (2017) J.M. Morgado et al. *Phys.Rev.D* 105 (2022)

Numerical Inversion of Radon Transform

Artificial Neural Networks

H. Dutrieux et al. Eur.Phys.J.C. 82 (2022)

Finite Elements Methods

N. Chouika et al. *Eur.Phys.J.C.* 77 (2017) J.M. Morgado et al. *Phys.Rev.D* 105 (2022)

Numerical Inversion of Radon Transform

Artificial Neural Networks

H. Dutrieux et al. Eur.Phys.J.C. 82 (2022)

Unbiased parametrization of DD

Finite Elements Methods

N. Chouika et al. *Eur.Phys.J.C.* 77 (2017) J.M. Morgado et al. *Phys.Rev.D* 105 (2022)

Parametrizing $h(\beta, \alpha)$ using Artificial Neural Networks (ANN)

- Dropout regularization

$$v_i^{(2)}o_i^{(1)} + b^{(2)}$$

$$w_{i}^{(2)} \left[\sigma \left(w_{\beta i}^{(1)} \beta + w_{\alpha i}^{(1)} \alpha + b_{i}^{(1)} \right) + \sigma \left(w_{\beta i}^{(1)} \beta - w_{\alpha i}^{(1)} \alpha + b_{i}^{(1)} \right) \right]$$

• Adam optimizer (gradient descent)

Parametrizing $h(\beta, \alpha)$ using Artificial Neural Networks (ANN)

- Dropout regularization

$$\begin{aligned} w_i^{(2)} o_i^{(1)} + b^{(2)} & h(\beta, -\alpha) = h(\beta, \alpha) \leftrightarrow H(x, -\xi) = H(x, \xi) \\ \uparrow & \uparrow \\ w_i^{(2)} \left[\sigma \left(w_{\beta i}^{(1)} \beta + w_{\alpha i}^{(1)} \alpha + b_i^{(1)} \right) + \sigma \left(w_{\beta i}^{(1)} \beta - w_{\alpha i}^{(1)} \alpha + b_i^{(1)} \right) \right] \end{aligned}$$

• Adam optimizer (gradient descent)

Parametrizing $h(\beta, \alpha)$ using Artificial Neural Networks (ANN)

- Dropout regularization

$$\begin{split} v_i^{(2)} o_i^{(1)} + b^{(2)} & h(\beta, -\alpha) = h(\beta, \alpha) \leftrightarrow H(x, -\xi) = H(x, \xi) \\ \uparrow & \uparrow \\ v_i^{(2)} \left[\sigma \left(w_{\beta i}^{(1)} \beta + w_{\alpha i}^{(1)} \alpha + b_i^{(1)} \right) + \sigma \left(w_{\beta i}^{(1)} \beta - w_{\alpha i}^{(1)} \alpha + b_i^{(1)} \right) \right] \\ \sigma(x) = \frac{1}{1 + e^{-x}} \end{split}$$

• Adam optimizer (gradient descent)

Algorithm

- Initialize the ANN parameters (randomly).
- the RT along each line (x_i, ξ_i) using $h_{ANN}(\beta, \alpha)$ as DD. $\Re h_{ANN}(x_i, \xi_i) = \hat{H}(x_i, \xi_i)$.
- Update the ANN parameters using Adam optimization algorithm in order to minimize $MSE = \frac{1}{N_{sample}} \sum_{i=1}^{N_{sample}} \left(H_i - \hat{H}_i \right)^2$
- Iterate until convergence.

• Given a sampling set of GPD values $H_i(x_i, \xi_i)$ in the DGLAP region, numerically evaluate

Testing with analytical models

Nakanishi based model for pion N.Chouika et al. *Phys.Lett.B*:780(2018)

$$H(x,\xi,t=0) = \begin{cases} 30 \frac{(1-x)^2(x^2-\xi^2)}{(1-\xi^2)^2}, & |x| > \xi \\ 15 \frac{(1-x)(\xi^2-x^2)(x+2x\xi+\xi^2)}{2\xi^3(1+\xi)^2}, & |x| < \xi \end{cases}$$

$$H(x,\xi,t=0) = (1-x) \int_{\Omega^+} d\beta d\alpha \delta(x-\beta-\alpha\xi) h(\beta,\alpha)$$
$$h(\beta,\alpha) = \frac{15}{2} \left(1-3(\alpha^2-\beta^2)-2\beta\right)$$

Testing with analytical models

Nakanishi based model for pion N.Chouika et al

$$H(x,\xi,t=0) = \begin{cases} 30 \frac{(1-x)^2(x^2-\xi^2)}{(1-\xi^2)^2}, & |x| > \xi \\ 15 \frac{(1-x)(\xi^2-x^2)(x+2x\xi+\xi^2)}{2\xi^3(1+\xi)^2}, & |x| < \xi \end{cases}$$

$$N_{neurons} = 10^2$$
, $N_{sample} = 10^4$

N.Chouika et al. *Phys.Lett.B*:780(2018)

$$H(x,\xi,t=0) = (1-x) \int_{\Omega^+} d\beta d\alpha \delta(x-\beta-\alpha\xi) h(\beta,\alpha)$$
$$h(\beta,\alpha) = \frac{15}{2} \left(1-3(\alpha^2-\beta^2)-2\beta\right)$$

 $\xi \in [0, \lambda x]$

$\xi \in [0, \, \lambda x]$

$$H(x,\xi) = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) q(\beta) \,h_{GK}(\beta,\alpha) \,,$$

$$h_{GK}(\beta, \alpha) = \frac{\Gamma(n+2)}{2^{n+1}\Gamma^2(n+1)} \frac{\left[(1-\beta)^2 - \alpha^2\right]^n}{(1-\beta)^{2n+1}}$$

$$H(x,\xi) = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) q(\beta) \,h_{GK}(\beta,\alpha) \,,$$

Valence distribution

$$q_{val}^{u}(\beta) = \beta^{-\delta}(1-\beta)^{2n+1} \sum_{j=0}^{2} c_{j} \beta^{j/2}, \quad n = 1, \ \delta = 0.48$$

$$h_{GK}(\beta, \alpha) = \frac{\Gamma(n+2)}{2^{n+1}\Gamma^2(n+1)} \frac{\left[(1-\beta)^2 - \alpha^2\right]^n}{(1-\beta)^{2n+1}}$$

$$H(x,\xi) = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) q(\beta) \,h_{GK}(\beta,\alpha) \,,$$

Valence distribution

$$q_{val}^{u}(\beta) = \beta^{-\delta}(1-\beta)^{2n+1} \sum_{j=0}^{2} c_{j} \beta^{j/2}, \quad n = 1, \ \delta = 0.48$$

Sea distribution

$$q_{sea}(\beta) = \beta^{-\delta} (1-\beta)^{2n+1} \sum_{j=0}^{3} c_j \beta^{j/2}, \quad n = 2, \ \delta = 1.1$$

$$h_{GK}(\beta, \alpha) = \frac{\Gamma(n+2)}{2^{n+1}\Gamma^2(n+1)} \frac{\left[(1-\beta)^2 - \alpha^2\right]^n}{(1-\beta)^{2n+1}}$$

$$H(x,\xi) = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) q(\beta) \,h_{GK}(\beta,\alpha) \,,$$

Valence distribution $q_{val}^{u}(\beta) = \beta^{-\delta}(1-\beta)^{2n+1} \sum_{j=0}^{2} c_{j} \beta^{j/2}$

Sea distribution

$$q_{sea}(\beta) = \beta^{-\delta}(1-\beta)^{2n+1} \sum_{j=0}^{3} c_j \beta^{j/2}, \quad n = 2, \ \delta = 1.1$$

$$H_{sea}(x,\xi) = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) \,\operatorname{sign}(\beta) \,q_{sea}(|\beta|) \,h_{GK}(|\beta|,\alpha) \longrightarrow H_{sea}(-x,\xi) = -H_{sea}(x,\xi)$$

$$h_{GK}(\beta, \alpha) = \frac{\Gamma(n+2)}{2^{n+1}\Gamma^2(n+1)} \frac{\left[(1-\beta)^2 - \alpha^2\right]^n}{(1-\beta)^{2n+1}}$$

$$i^{/2}, n = 1, \delta = 0.48$$

$$H(x,\xi) = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) q(\beta) \,h_{GK}(\beta,\alpha) \,,$$

Valence distribution $q_{val}^{u}(\beta) = \beta^{-\delta}(1-\beta)^{2n+1} \sum_{j=0}^{2} c_{j} \beta^{j/2}$

Sea distribution

$$q_{sea}(\beta) = \beta^{-\delta} (1-\beta)^{2n+1} \sum_{j=0}^{3} c_j \beta^{j/2}, \quad n = 2, \ \delta = 1.1$$

$$H_{sea}(x,\xi) = \int_{\Omega} d\beta d\alpha \,\delta\left(x - \beta - \alpha\xi\right) \,\operatorname{sign}(\beta) \,q_{sea}(|\beta|) \,h_{GK}(|\beta|,\alpha) \longrightarrow H_{sea}(-x,\xi) = -H_{sea}(x,\xi)$$

$$N_{neurons} = 25$$
, $N_{sample} = 5 \times 10^3$ $h_{GK}(\beta, \alpha) \simeq$

$$h_{GK}(\beta, \alpha) = \frac{\Gamma(n+2)}{2^{n+1}\Gamma^2(n+1)} \frac{\left[(1-\beta)^2 - \alpha^2\right]^n}{(1-\beta)^{2n+1}}$$

$$h^{1/2}, n = 1, \delta = 0.48$$

$$\frac{h_{ANN}(\beta,\alpha)}{\int_{-1+|\beta|}^{1-|\beta|} d\alpha h_{ANN}(\beta,\alpha)}$$

Valence DD/GPD

Sea DD/GPD

Conclusions and Outlook

- GPD can be extended from DGLAP (and proper subsets) to ERBL inverting its RT
- ANNs are a good tool for inverting RT (Unbiased parametrization)
- Testing the method on experimental results (EIC)

• Applying ANNs to PDF reconstruction from a sequence of Mellin moments (with K. Raya and J. Quintero)

• Applying ANNs to PDF reconstruction from a sequence of Mellin moments (with K. Raya and J. Quintero)

symmetry)

It works when PDF is symmetric, i.e. for the valence pion PDF (isospin

• Applying ANNs to PDF reconstruction from a sequence of Mellin moments (with K. Raya and J. Quintero)

symmetry)

Alternative

$$[\mathscr{A}_1, \mathscr{A}_2, \dots, \mathscr{A}_n]$$

It works when PDF is symmetric, i.e. for the valence pion PDF (isospin

 $[q(x_1), q(x_2), \dots, q(x_m)]$

 Applying ANNs to PDF reconstruction from a sequence of Mellin moments (with K. Raya and J. Quintero)

symmetry)

Memory loss problem — Trying with Transformer

It works when PDF is symmetric, i.e. for the valence pion PDF (isospin

 $[q(x_1), q(x_2), \dots, q(x_m)]$

