TENSOR CHARGE OF THE NUCLEON

Alexei Prokudin

PSU Berks and JLab

MOTIVATION

TRANSVERSITY

$S_{T}^{i} \boldsymbol{h}_{1}^{q}(x)=\frac{1}{2} \int \frac{d \xi^{-}}{2 \pi} e^{i x P^{+} \xi^{-}} \operatorname{Tr}\left[\langle P, S| \bar{\psi}_{q}(0) \mathcal{W}\left(0, \xi^{-}\right) \psi_{q}\left(\xi^{-}\right) i \sigma^{i+} \gamma_{5}|P, S\rangle\right]$
transversity PDF - universal parton density encoding the difference between the number of quarks with their spin aligned versus anti-aligned to the proton's spin when it's in a transverse direction

$$
\delta q \equiv \int_{0}^{1} d x\left[h_{1}^{q}(x)-h_{1}^{\bar{q}}(x)\right] \quad g_{T} \equiv \delta u-\delta d
$$

Tensor charge for an individual flavor Isovector combination

TENSOR CHARGE

$$
\langle P| \bar{\psi}_{q} \sigma^{i+} \psi_{q}|P\rangle=\delta q\left[\bar{u}_{P} \sigma^{i+} u_{P}\right]
$$

local matrix element - can be computed in lattice QCD as well as other approaches like Dyson-Schwinger equations

Gupta, et al. (2018);
Yamanaka, et al. (2018);
Masan, et al. (2019);
Alexandrou, et al. $(2019,2023)$;
Yamanaka, et al. (2013);
Pitchman, et al. (2015);
Xu, et al. (2015);
Wang, et al. (2018)

TENSOR CHARGE

- Like the scalar, vector, and axial charges, it is a fundamental charge of the nucleon (although scale dependent)
> Since helicity PDF \neq transversity PDF in relativistic quantum mechanics, it can be considered a measure of relativistic effects in the nucleon
- Key point of comparison between QCD phenomenology/experiment and ab initio approaches like lattice QCD and DSE
- Tensor couplings, not present in the SM Lagrangian, could be the footprints of new physics at higher scales

$$
\varepsilon_{\mathrm{T}} \mathrm{~g}_{\mathrm{T}} \approx \mathrm{M}_{\mathrm{W}^{2}} / \mathrm{M}_{\mathrm{BSM}}{ }^{2}
$$

Lagrangian for neutron beta decay

Bhattacharya et al, PRD 85 (12)
Pattie et al., P.R. C88 (13)
Courtoy et al, PRL 115 (2015)

$$
\mathcal{L}_{n \rightarrow p e \bar{\nu}_{e}} \sim \ldots+4 \sqrt{2} G_{F} V_{u d} g_{T} \epsilon_{T} \bar{p} \sigma^{\mu \nu} n \bar{e} \sigma_{\mu \nu} \nu_{e}+\ldots
$$

EDM of the proton

TENSOR CHARGE

PHENOMENOLOGY

TRANSVERSITY

> Transversity is a chiral odd quantity, it must couple to another chair odd function to be measured

- Another transversity (or another chiral odd function) in double polarized Drell-Yan
> Chiral odd fragmentation function, Collins function or interference dihadron FF, in Semi Inclusive Deep Inelastic Scattering
> Modulations measured in pion in jet, or left-right asymmetry in proton-proton scattering
> Exclusive processes where transversity GPDs are accessible

TRANSVERSE MOMENTUM DEPENDENT DISTRIBUTIONS

- TMDs depend both on collinear and transverse momenta

- Universal in SIDIS, $\mathrm{e}^{+} \mathrm{e}^{-}$, and PP
> Transversity TMD should couple to another chiral odd function

Metz, Collins (2004)
Yuan (2008)
Boer, Kang, Vogelsang, Yuan (2010)

TRANSVERSE SPIN ASYMMETRIES IN SIDIS AND E+E-

$$
F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)} \sim h_{1}\left(x_{B}, k_{\perp}\right) H_{1}^{\perp}\left(z_{h}, p_{\perp}\right)
$$

transversity Collins function

$$
\frac{d \sigma\left(S_{\perp}\right)}{d x_{B} d y d z_{h} d^{2} P_{h \perp}}=\sigma_{0}\left(x_{B}, y, Q^{2}\right)\left[F_{U U}+\sin \left(\phi_{h}+\phi_{s}\right) \frac{2(1-y)}{1+(1-y)^{2}} F_{U T}^{\sin \left(\phi_{h}+\phi_{s}\right)}+\ldots\right]
$$

$$
Z_{\mathrm{collins}}^{h_{1} h_{2}} \sim H_{1}^{\perp}\left(z_{1}, p_{1 \perp}\right) H_{1}^{\perp}\left(z_{2}, p_{2 \perp}\right)
$$

Collins function Collins function

$$
\frac{d \sigma^{e^{+} e^{-} \rightarrow h_{1} h_{2}+X}}{d z_{h 1} d z_{h 2} d^{2} P_{h \perp} d \cos \theta}=\frac{N_{c} \pi \alpha_{\mathrm{em}}^{2}}{2 Q^{2}}\left[\left(1+\cos ^{2} \theta\right) Z_{u u}^{h_{1} h_{2}}+\sin ^{2} \theta \cos \left(2 \phi_{0}\right) Z_{\mathrm{collins}}^{h_{1} h_{2}}\right]
$$

TRANSVERSE SPIN ASYMMETRY IN PP SCATTERING

A_{N} in pp scattering is related to collinear twist-3 (CT3) factorization

$$
d \Delta \sigma\left(S_{T}\right) \sim H_{Q S} \otimes f_{1} \otimes \boldsymbol{F}_{\boldsymbol{F T}} \otimes D_{1}+H_{F} \otimes f_{1} \otimes \boldsymbol{h}_{\mathbf{1}} \otimes\left(H_{1}^{\perp(1)}, \tilde{\boldsymbol{H}}\right)
$$

Qiu-Sterman term

$\pi \boldsymbol{F}_{F T}(x, x)=\int d^{2} \vec{k}_{T} \frac{k_{T}^{2}}{2 M^{2}} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \equiv f_{1 T}^{\perp(1)}(x)$ the first moment of Sivers function Boer, et al (03)

TMD and CT3 factorizations agree in their overlapping region of applicability

TRANSVERSE SPIN ASYMMETRIES

A_{N} in pp scattering is related to collinear twist-3 (CT3) factorization

$d \Delta \sigma\left(S_{T}\right) \sim H_{Q S} \otimes f_{1} \otimes \boldsymbol{F}_{F T} \otimes D_{1}+H_{F} \otimes f_{1} \otimes \boldsymbol{h}_{1} \otimes\left(H_{1}^{\perp(1)}, \tilde{\boldsymbol{H}}\right)$

Fragmentation term
$\boldsymbol{h}_{\mathbf{1}}$ collinear transversity

DIHADRON FRAGMENTATION APPROACH

collinear PDFs (x)

N	U	L	T
U	f_{1}		
L		g_{1}	
T			$\mathrm{~h}_{1}$

extDiFFs $\left(z, M_{\mathrm{h}}\right)$

q	U	L	T
N	U	L	
U	$\boldsymbol{D}_{\mathbf{1}}$		$\boldsymbol{H}_{1}^{\varangle}$

Collins, et al. (1994); Bianconi, et al. (1999), etc *
$z=z_{1}+z_{2}, M_{h}=$ invariant mass of dihadron. The "extended" DiFFs (extDiFFs) depend on z and M_{h} (or equivalently R_{T})

$$
\boldsymbol{H}_{1}^{\varangle} \text { is chiral-odd "interference" FF (IFF) }
$$

DIHADRON FRAGMENTATION APPROACH

$$
e^{+} e^{-} \rightarrow\left(h_{1} h_{2}\right)\left(\bar{h}_{1} \bar{h}_{2}\right) X
$$

$$
\ell N^{\uparrow} \rightarrow \ell\left(h_{1} h_{2}\right) X
$$

$$
p^{\uparrow} p \rightarrow\left(h_{1} h_{2}\right) X
$$

Collins, et al. (1994); Bianconi, et al. (1999); Bacchetta, Radici (2003, 2004); Courtoy, et al. (2012); Matevosyan, et al. (2018); Radici, et al. (2013, 2015, 2018); Benel, et al. (2020); Pitonyak et al (2023); Cocuzza et al (2023)

$$
\begin{aligned}
& a_{12 R}=\frac{\sin ^{2} \theta \sum_{q} e_{q}^{2} \boldsymbol{H}_{1}^{\varangle, q}\left(z, M_{h}^{2}\right) \boldsymbol{H}_{1}^{\varangle, \bar{q}}\left(\bar{z},{\overline{M_{1}}}_{h}^{2}\right)}{\left(1+\cos ^{2} \theta\right) \sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}^{2}\right) D_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}^{2}\right)} \\
& A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right)}=\frac{\sum_{q} e_{q}^{2} \boldsymbol{h}_{1}^{\boldsymbol{q}}(\boldsymbol{x}) \boldsymbol{H}_{1}^{\varangle, q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}^{2}\right)} \\
& A_{U T}^{\sin \left(\phi_{R}-\phi_{S}\right)} \sim \frac{\frac{d \Delta t r u-}{\hat{\sigma}_{a b \uparrow \rightarrow c \uparrow d}}}{d \hat{t}} \otimes f_{1}^{a}\left(x_{a}\right) \otimes \boldsymbol{h}_{1}^{b}\left(\boldsymbol{x}_{\boldsymbol{b}}\right) \otimes \boldsymbol{H}_{1}^{\varangle, c}\left(z, M_{h}^{2}\right) \\
& \frac{d \hat{\sigma}_{a b \rightarrow c d}}{d \hat{t}} \otimes f_{1}^{a}\left(x_{a}\right) \otimes f_{1}^{b}\left(x_{b}\right) \otimes D_{1}^{c}\left(z, M_{h}^{2}\right)
\end{aligned}
$$

Artru-Collins asymmetry,

$$
D_{1} \text { can be constrained using }
$$

$$
\text { measurements of } \mathrm{d} \sigma / \mathrm{dzdM} \mathrm{M}_{\mathrm{h}} \text { from BELLE (2017) }
$$

TMD/CT3 ANALYSES OF THE DATA

	$\mathbf{e}^{+} \mathbf{e}^{-}$ Collins	SIDIS Collins	Hadron-in-jet Collins	Protonproton A_{N}	Lattice tensor charge(s)	Soffer bound	Framework
Anselmino, et al. (2015)	$\sqrt{ }$	$\sqrt{ }$	X	X	X	$\sqrt{ }$	Parton model
Kang, et al. (2016)	$\sqrt{ }$	$\sqrt{ }$	X	X	X	$\sqrt{ }$	CSS/TMD evolution
Lin, et al. (2018)	X	$\sqrt{ }$	X	X	$\sqrt{g_{T}}$	X	Parton model
D’Alesio, et al. (2020)	$\sqrt{ }$	$\sqrt{ }$	X	X	X	x^{\dagger}	Parton model
Cammarota, et al. (2020) JAM3D-20*	$\sqrt{ }$	$\sqrt{ }$	X	$\sqrt{ }$	X	X	Parton model
*Also included Sivers effects in SIDIS and Drell-Yan $\dagger_{\text {Performed fit both with and without SB }}$				Soffer bound (SB): $\left\|h_{1}^{q}(x)\right\| \leq \frac{1}{2}\left(f_{1}^{q}(x)+g_{1}^{q}(x)\right)$			

Note: Predictions exist for hadron-in-jet Collins effect (D'Alesio, et al. (2017); Kang, et al. (2017)) but no groups have included the STAR data in a fit. These are important measurements to use in future studies.

TMD/CT3 ANALYSES OF THE DATA

	eteCollins	SIDIS Collins	Hadron-in-jet Collins	Protonproton A_{N}	Lattice tensor charge(s)	Soffer bound	Framework
Anselmino, et al. (2015)	\checkmark	\checkmark	X	X	X	\checkmark	Parton model
Kang, et al. (2016)	\checkmark	\checkmark	X	X	X	\checkmark	CSS/TMD evolution
Lin, et al. (2018)	X	\checkmark	X	X	$\sqrt{ } g_{T}$	X	Parton model
D'Alesio, et al. (2020)	\checkmark	\checkmark	X	X	X	X^{\dagger}	Parton model
Cammarota, et al. (2020) JAM3D-20*	\checkmark	\checkmark	X	\checkmark	X	X	Parton model
Gamberg, et al. (2022) JAM3D-22*	\checkmark	\checkmark	X	\checkmark	$\sqrt{ } g_{T}$	\checkmark^{\wedge}	Parton model
*Also included Sivers effects in SIDIS and Drell-Yan \dagger Performed fit both with and without SB				\wedge Imposed the SB but allowed for violations given the uncertainties in $f_{1}(x)$ and $g_{1}(x)$			

TMD/CT3 ANALYSES OF THE DATA

Jefferson Lab Angular Momentum Collaboration

JAM20 ANALYSIS

UNIVERSAL GLOBAL FIT 2020

JAM20: Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato Phys.Rev.D 102 (2020) 5, 05400 (2020)
JAM22: Gamberg, Malda, Miller, Pitonyak, Prokudin, Sato, Phys.Rev.D 106 (2022) 3, 034014

Collins asymmetries BELLE, BaBar, BESIII data

Sivers, Collins asymmetries COMPASS, HERMES, JLab data

Drell-Yan and W,Z

proton
Sivers asymmetries COMPASS, STAR data

UNIVERSAL GLOBAL FIT 2020

Jefferson Lab Angular Momentum Collaboration
https://www.jlab.org/theory/jam

Observable	Reactions	Non-Perturbative Function(s)	$\boldsymbol{\chi}^{\mathbf{2}} / \boldsymbol{N}_{\text {pts. }}$
$A_{\text {SIDIS }}^{\text {Siv }}$	$e+(p, d)^{\uparrow} \rightarrow e+\left(\pi^{+}, \pi^{-}, \pi^{0}\right)+X$	$f_{1 T}^{\perp}\left(x, k_{T}^{2}\right)$	$150.0 / 126=1.19$
$A_{\mathrm{SIDID}}^{\mathrm{Col}}$	$e+(p, d)^{\uparrow} \rightarrow e+\left(\pi^{+}, \pi^{-}, \pi^{0}\right)+X$	$h_{1}\left(x, k_{T}^{2}\right), H_{1}^{\perp}\left(z, z^{2} p_{\perp}^{2}\right)$	$111.3 / 126=0.88$
$A_{\mathrm{SIA}}^{\mathrm{CoI}}$	$e^{+}+e^{-} \rightarrow \pi^{+} \pi^{-}(U C, U L)+X$	$H_{1}^{\perp}\left(z, z^{2} p_{\perp}^{2}\right)$	$154.5 / 176=0.88$
$A_{\mathrm{DY}}^{\text {Siv }}$	$\pi^{-}+p^{\uparrow} \rightarrow \mu^{+} \mu^{-}+X$	$f_{1 T}^{\perp}\left(x, k_{T}^{2}\right)$	$5.96 / 12=0.50$
$A_{\mathrm{DY}}^{\text {Siv }}$	$p^{\uparrow}+p \rightarrow\left(W^{+}, W^{-}, Z\right)+X$	$f_{1 T}^{\perp}\left(x, k_{T}^{2}\right)$	$31.8 / 17=1.87$
A_{N}^{h}	$p^{\uparrow}+p \rightarrow\left(\pi^{+}, \pi^{-}, \pi^{0}\right)+X$	$h_{1}(x), F_{F T}(x, x)=\frac{1}{\pi} f_{1 T}^{\perp(1)}(x), H_{1}^{\perp(1)}(z)$	$66.5 / 60=1.11$

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)
\$18 observables and 6 non-perturbative functions (Sivers up/down; transversity up/down; Collins favored/unfavored)

$$
\boldsymbol{h}_{1}(x), \boldsymbol{F}_{F T}(x, x), H_{1}^{\perp(1)}(z), \hat{H}(z)
$$

Broad kinematical coverage to test universality
The analysis is performed at parton level leading order, gaussian model is used for TMDs, and DGLAP-type evolution is implemented

UNIVERSAL GLOBAL FIT 2020

JAM20: Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato Phys.Rev.D 102 (2020) 5, 05400 (2020)

The relevant set of collinear functions to extract
$h_{1}(x) \quad$ transversity

$$
\pi F_{F T}(x, x)=\int d^{2} \vec{k}_{T} \frac{k_{T}^{2}}{2 M^{2}} f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \equiv f_{1 T}^{\perp(1)}(x)
$$

$F_{F T}(x, x)$
$H_{1}^{\perp(1)}(z)$
$\tilde{H}(z)$
Qiu-Sterman function (related to Sivers function)
the first k_{T} moment of Collins FF
fragmentation twist-3 function

$$
H_{1}^{\perp(1)}(z) \equiv z^{2} \int d^{2} \vec{p}_{\perp} \frac{p_{\perp}^{2}}{2 M_{h}^{2}} H_{1}^{\perp}\left(z, z^{2} p_{\perp}^{2}\right)
$$

Flexible parametrization

$$
F^{q}(x)=\frac{N_{q} x^{a_{q}}(1-x)^{b_{q}}\left(1+\gamma_{q} x^{\alpha_{q}}(1-x)^{\beta_{q}}\right)}{\mathrm{B}\left[a_{q}+2, b_{q}+1\right]+\gamma_{q} \mathrm{~B}\left[a_{q}+\alpha_{q}+2, b_{q}+\beta_{q}+1\right]}
$$

UNIVERSAL GLOBAL FIT 2020

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

Transversity $h_{1}(x)$

Sivers

$f_{1 T}^{\perp(1)}(x)$

Collins FF

$$
H_{1}^{\perp(1)}(z)
$$

UNIVERSAL GLOBAL FIT 2020

JAM20: Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato Phys.Rev.D 102 (2020) 5, 05400 (2020)

SIDIS

Collins asymmetry

$$
\frac{\chi^{2}}{\text { npoints }}=\frac{107.1}{126}=0.85
$$

Sivers asymmetry

$$
\frac{\chi^{2}}{n p o i n t s}=\frac{85.4}{88}=0.97
$$

UNIVERSAL GLOBAL FIT 2020

JAM20: Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato Phys.Rev.D 102 (2020) 5, 05400 (2020)

UNIVERSAL GLOBAL FIT 2020

Drell-Yan

$$
\frac{\chi^{2}}{\text { npoints }}=\frac{7.6}{12}=0.63
$$

COMPASS DY

UNIVERSAL GLOBAL FIT 2020

proton-proton A_{N}

UNIVERSAL GLOBAL FIT 2020

$$
\begin{aligned}
& \frac{E_{h} d \sigma^{F r a g}\left(S_{P}\right)}{d^{3} \vec{P}_{h}}=-\frac{4 \alpha_{s}^{2} M_{h}}{S} \epsilon^{P^{\prime} P P_{h} S_{P}} \sum_{i} \sum_{a, b, c} \int_{0}^{1} \frac{d z}{z^{3}} \int_{0}^{1} d x^{\prime} \int_{0}^{1} d x \delta(\hat{s}+\hat{t}+\hat{u}) \\
& \times \frac{1}{\hat{s}\left(-x^{\prime} \hat{t}-x \hat{u}\right)} h_{1}^{a}(x) f_{1}^{b}\left(x^{\prime}\right)\left\{\left[H_{1}^{\perp(1), \pi / c}(z)-z \frac{d H_{1}^{\perp(1), \pi / c}(z)}{d z}\right] S_{H_{1}^{\perp}}^{i}+\frac{1}{z} H^{\pi / c}(z) S_{H}^{i}\right. \\
& \left.+\frac{2}{z} \int_{z}^{\infty} \frac{d z_{1}}{z_{1}^{2}} \frac{1}{\left(\frac{1}{z}-\frac{1}{z_{1}}\right)^{2}} \hat{H}_{F U}^{\pi / c, \mathfrak{J}}\left(z, z_{1}\right) S_{\hat{H}_{F U}}^{i}\right\},
\end{aligned}
$$

Integration over \mathbf{x} for transversity, conservation of momenta in $a b \rightarrow c d$:

$$
\int_{x_{\text {min }}}^{1} \frac{d x}{x} \quad x_{\min }=-(U / z) /(T / z+S)
$$

RHIC data is sensitive to high-x behavior of transversity quark-gluon channel is dominant contribution for large X_{F}

UNIVERSAL GLOBAL FIT 2020

JAM20: Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato Phys.Rev.D 102 (2020) 5, 05400 (2020)

- Tensor charge from up and down quarks is constrained and compatible with lattice results
- Isovector tensor charge $\mathrm{g}_{\mathrm{T}}=\delta \mathrm{u}-\delta \mathrm{d}$

δu and $\delta d Q^{2}=4 \mathrm{GeV}^{2}$

$\delta u=0.65 \pm 0.22$
$\delta \mathrm{d}=-0.24 \pm 0.2$ $g_{\top}=0.89 \pm 0.12$ compatible with lattice results

- Collins and Sivers (3D binned) SIDIS data from HERMES (2020)

HERMES Collaboration, A. Airapetian et al. JHEP 12 (2020) 010
$>A_{U T}^{\sin \phi_{S}}$ (x and z projections only) from HERMES (2020)
> All other data sets are the same as in JAM20 (COMPASS, BELLE, RHIC), except for the new HERMES data that supersedes previous sets

- 19 observables and 8 non-perturbative functions (Sivers up/down; transversity up/down; Collins fav/unf, \tilde{H} fav/unf)
$h_{1}(x), \boldsymbol{F}_{F T}(x, x), H_{1}^{\perp(1)}(z), \tilde{H}(z)$
- Lattice data on g_{T} at the physical pion mass from Alexandrou, et al. (2020) (as a Bayesian prior)
C. Alexandrou et al, Phys.Rev.D 102 (2020)
- \quad (as a Bayesian prior))
J. Soffer, Phys.Rev.Lett. 74 (1995)

UNIVERSAL GLOBAL ANALYSIS 2022

Transversity

$$
h_{1}(x)
$$

Sivers
$f_{1 T}^{\perp(1)}(x)$
Collins FF

$$
H_{1}^{\perp(1)}(z)
$$

Twist-3 FF $\tilde{H}(z)$

JAM22: TRANSVERSITY AND LATTICE

The raw lattice data for Egerer, et al. and Alexandrou, et al. are compatible, but the former uses pseudo-PDFs and the latter quasi-PDFs

The behavior at large x for the up quark in Alexandrou, et al. is due to systematics in the reconstruction of the x dependence in the quasi-PDF approach

We find good agreement with lattice calculations of transversity
Now that the lattice gT data point is included in JAM3D-22, the uncertainties in the phenomenological extraction of transversity are compatible with lattice

UNIVERSAL GLOBAL ANALYSIS 2022

- Tensor charge from up and down quarks and $\mathrm{g}_{\mathrm{T}}=\delta u-\delta d$ are well constrained and compatible with both lattice results and the Soffer bound
δu and $\delta \mathrm{d}^{2}=4 \mathrm{GeV}^{2}$

$$
\delta u=0.74 \pm 0.11
$$

$\delta \mathrm{d}=-0.15 \pm 0.12$
$\mathrm{g}_{\mathrm{T}}=0.89 \pm 0.06$

- Once the the lattice gt data point is included, we find the non-perturbative functions can accommodate it and still describe the experimental data well

TRANSVERSE SPIN PUZZLE?

- Dihadron analyses (e.g., Benel, et al. (2020); Radici, Bacchetta (2018)), along with TMD fits that only include e+e- and SIDIS Collins effect data (e.g., Kang, et al. (2016)), are generally below the lattice values for g_{t} and $\delta \mathrm{u}$
- Data, theory, phenomenology?

DIHADRON STUDIES

$\begin{gathered} \mathrm{e}^{+} \mathrm{e}^{-} \\ \mathrm{d} \sigma / \mathrm{dzdM}_{\mathrm{h}} \end{gathered}$	$\mathbf{e}^{+} \mathbf{e}^{-}$ Artru- Collins	$\begin{gathered} \text { SIDIS } \\ \sin \left(\varphi_{R}+\varphi_{S}\right) \end{gathered}$	$\begin{aligned} & \text { Proton- } \\ & \text { proton } \\ & \sin \left(\varphi_{R}-\varphi_{S}\right) \end{aligned}$	Lattice tensor charge(s)	Soffer bound

Radici,
Bacchetta
(2018)

Benel, Courtoy,FerroHernandez (2020)

Cocuzza, et al. (2023)

JAMDiFF-23

PYTHIA

* $D_{1}\left(z, M_{h}\right)$ and $H_{1}^{\Varangle}\left(z, M_{h}\right)$ were fit in a separate analysis and then fixed when extracting $h_{1}(x)$
\wedge Imposed the SB but allowed for violations given the uncertainties in $f_{1}(x)$ and $g_{1}(x)$

DIHADRON STUDIES

Radici, Bacchetta (2018)

Benel, et al. (2020)

JAMDIFF23 SETUP

> SIA cross section, Belle (2017), $\pi^{+} \pi^{-} 1121$ points
R. Seidl et al., Phys. Rev. D 96, no. 3, 032005 (2017)

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} z \mathrm{~d} M_{h}}=\frac{4 \pi \alpha_{\mathrm{em}}^{2}}{s} \sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}\right)
$$

- SIA Artru-Collins, Belle (2011), $\pi^{+} \pi^{-} 183$ points
A. Vossen et al., Phys. Rev. Lett. 107, 072004 (2011)

$$
A^{e^{+} e^{-}}\left(z, M_{h}, \bar{z}, \bar{M}_{h}\right)=\frac{\sin ^{2} \theta \sum_{q} e_{q}^{2} H_{1}^{\varangle, q}\left(z, M_{h}\right) H_{1}^{\varangle, \bar{q}}\left(\bar{z}, \bar{M}_{h}\right)}{\left(1+\cos ^{2} \theta\right) \sum_{q} e_{q}^{2} D_{1}^{q}\left(z, M_{h}\right) D_{1}^{\bar{q}}\left(\bar{z}, \bar{M}_{h}\right)}
$$

$$
D_{1}^{u}=D_{1}^{d}=D_{1}^{\bar{u}}=D_{1}^{\bar{d}},
$$

$$
D_{1}^{s}=D_{1}^{\bar{s}}, \quad D_{1}^{c}=D_{1}^{\bar{c}}, \quad D_{1}^{b}=D_{1}^{\bar{b}},
$$

5 independent functions (w/ D_{1}^{g})
[supplement with PYTHIA data] for $\sigma^{q} / \sigma^{t o t}$ for $q=s, c, b$
$\sqrt{s}=[10.58,30.73,50.88,71.04,91.19] \mathrm{GeV}$

$$
\begin{gathered}
H_{1}^{\varangle, u}=-H_{1}^{\varangle, d}=-H_{1}^{\varangle, \bar{u}}=H_{1}^{\varangle, \bar{d}}, \\
H_{1}^{\varangle, s}=-H_{1}^{\varangle, \bar{s}}=H_{1}^{\varangle, c}=-H_{1}^{\varangle, \bar{c}}=0, \\
\quad 1 \text { independent function }
\end{gathered}
$$

A. Courtoy et al., Phys. Rev. D 85, 114023 (2012)

JAMDIFF23 SETUP

> SIDIS (p,d) SOMPASS, HERMES, 64 points

$$
A_{U T}^{\text {SIDIS }}=c(y) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{\varangle, q}\left(z, M_{h}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}\left(z, M_{h}\right)} \quad \begin{array}{cc}
\text { C. Adolph et al., Phys. Lett. B 713, 10-16 (2012) } \\
\text { A. Airapetian et al., JHEP 06, 017 (2008) }
\end{array} \quad 3 \text { independent observables }
$$

> Proton-proton, STAR, 269 points

$$
A_{U T}^{p p}=\frac{\mathscr{H}\left(M_{h}, P_{h T}, \eta\right)}{\mathscr{D}\left(M_{h}, P_{h T}, \eta\right)} \quad \begin{aligned}
& \text { L. Adamczyk et al., Phys. Rev. Lett. 115, 242501 (2015) } \\
& \mathscr{H}\left(M_{h}, P_{h T}, \eta\right)=2 P_{h T} \sum_{i} \sum_{a, b, c} \int_{x_{a}^{\min }}^{1} \mathrm{~d} x_{a} \int_{x_{b}^{\min }}^{1} \frac{\mathrm{~d} x_{b}}{z} f_{1}^{a}\left(x_{a}\right) h_{1}^{b}\left(x_{b}\right) \frac{\mathrm{d} \Delta \hat{\sigma}_{a b^{\uparrow} \rightarrow c^{\uparrow} d}}{\mathrm{~d} \hat{t}} H_{1}^{\Varangle, c}\left(z, M_{h}\right) \\
& \mathscr{D}\left(M_{h}, P_{h T}, \eta\right)=2 P_{h T} \sum_{i} \sum_{a, b, c} \int_{x_{a}^{\min }}^{1} \mathrm{~d} x_{a} \int_{x_{b}^{\min }}^{1} \frac{\mathrm{~d} x_{b}}{z} f_{1}^{a}\left(x_{a}\right) f_{1}^{b}\left(x_{b}\right) \frac{\mathrm{d} \hat{\sigma}_{a b \rightarrow c d}}{\mathrm{~d} \hat{t}} D_{1}^{c}\left(z, M_{h}\right)
\end{aligned}
$$

$$
\begin{gathered}
h_{1}^{u_{v}} \\
h_{1}^{d_{v}} \\
\overline{\bar{u}}=-h_{1}^{\bar{d}}
\end{gathered}
$$

EXTRACTED DIFFS

Bound: $D_{1}^{q}>0$
A. Bacchetta and M. Radici, Phys. Rev. D 67, 094002 (2003)

- Due to the resonance structure we use a flexible spline parametrization on a grid $\mathbf{M}_{h}^{u}=\left[2 m_{\pi}, 0.40,0.50,0.70,0.75,0.80,0.90,1.00,1.20,1.30,1.40,1.60,1.80,2.00\right] \mathrm{GeV}$
- Each point is interpolated

$$
D_{1}^{u}\left(z, \mathbf{M}_{h}^{u, i}\right)=\sum_{j=1,2,3} \frac{N_{i j}^{u} z^{\alpha_{i j}^{u}(1-z)^{\beta_{i j}^{u}}}}{\mathrm{~B}\left[\alpha_{i j}^{u}+1, \beta_{i j}^{u}+1\right]}
$$

$\rightarrow 204$ parameters for D_{1} and 48 parameters for H_{1}^{\varangle}

QUALITY OF THE FIT

Data: R. Seidl et al., Phys. Rev. D 96, no. 3, 032005 (2017)

JAMDIFF23: C. Cocuzza, A. Metz, D. Pitonyak, A. Prokudin, N. Sato, R. Seidl e-Print: 2308.14857(2023)
C. Cocuzza, A. Metz, D. Pitonyak, A. Prokudin, N. Sato, R. Seidl e-Print: 2306.12998(2023)

QUALIV OFTHEEF

Data: A. Vossen et al., Phys. Rev. Lett. 107, 072004 (2011)

bins in z

bins in M_{h}, \bar{M}_{h}

bins in \bar{z}

EXTRACTED DIFFS

Bound:
 $\left|H_{1}^{\varangle, q}\right|<D_{1}^{q}$

A. Bacchetta and M. Radici, Phys. Rev. D 67, 094002 (2003)

QUALITY OF FIT SIDIS AND PP

Data: C. Adolph et al., (COMPASS) Phys. Lett. B 713, 10-16 (2012)
A. Airapetian et al. (HERMES), JHEP 06, 017 (2008)

TRANSVERSITY

- We use the following parametrization for transversity PDFs $\mathrm{u}_{\mathrm{v}}, \mathrm{d}_{\mathrm{v}}$, and $\bar{u}=-\bar{d}$ (from large- N_{C} limit (Pobylitsa (2003))) and impose the Soffer bound $\left|h_{1}^{i}(x ; \mu)\right| \leq \frac{1}{2}\left[f_{1}^{i}(x ; \mu)+g_{1}^{i}(x ; \mu)\right]$

$$
\begin{aligned}
& h_{1}^{i}(x)=\frac{N^{i}}{\mathcal{M}^{i}} x^{\alpha^{i}}(1-x)^{\beta^{i}}\left(1+\gamma^{i} \sqrt{x}+\delta^{i} x\right) \\
& \mathcal{M}^{i}=\mathrm{B}\left[\alpha^{i}+1, \beta^{i}+1\right]+\gamma^{i} \mathrm{~B}\left[\alpha^{i}+\frac{3}{2}, \beta^{i}+1\right]+\delta^{i} \mathrm{~B}\left[\alpha^{i}+2, \beta^{i}+1\right]
\end{aligned}
$$

$\rightarrow 15$ parameters for h_{1}

- We include small-x constraint Y.V. Kovchegov and M. D. Sievert, Phys. Rev. D 99, 054033 (2019)

$$
\alpha^{i} \xrightarrow{x \rightarrow 0} 1-2 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \quad \alpha=0.170 \pm 0.085
$$

> Perform the analysis with and without LQCD data for the tensor charges $\delta u, \delta d$ from ETMC (Alexandrou, et al. (2019)) and PNDME (Gupta, et al. (2018)) (physical pion mass and 2+1+1 flavors)

TRANSVERSITY AND TENSOR CHARGE

> JAMDiFF (no LQCD) finds agreement with Radici, Bacchetta (2018) with a slightly larger uv function at larger x
> JAM3D* $=$ JAM22 (no LQCD) + antiquarks w/ $\bar{u}=-\bar{d}+$ small $-x$ constraint
> JAMDiFF agrees with JAM3D*

- Agreement between all three analyses within errors

TRANSVERSITY AND TENSOR CHARGE

> Agreement between all three analyses within errors
> JAMDiFF and JAM3D*result in larger δu

- Before drawing a conclusion about the compatibility between LQCD tensor charges and experimental data, one needs first to include both in the analysis. One should only be concerned if the description of the lattice data remains poor even after its inclusion and/or if the description of the experimental data suffers significantly.
> NNPDF methodology was used to verify the compatibility of results
R. D. Ball et al. (NNPDF), Eur. Phys. J. C 82, 428 (2022)

TRANSVERSITY AND TENSOR CHARGE

Experiment	Binning	$N_{\text {dat }}$	(w/ LQCD)	$\chi_{\text {red }}^{2}$ JAMDiFF $($ no LQCD $)$	(SIDIS only)
Belle (cross section)[64]	z, M_{h}	1094	1.01	1.01	1.01
Belle (Artru-Collins) [112]	z, M_{h}	55	1.27	1.24	1.28
	M_{h}, \bar{M}_{h}	64	0.60	0.60	0.60
	z, \bar{z}	64	0.42	0.42	0.41
HERMES [118]	$x_{\text {bj }}$	4	1.77	1.70	1.67
	M_{h}	4	0.41	0.42	0.47
	z	4	1.20	1.17	1.13
COMPASS (p) [117]	$x_{\text {bj }}$	9	1.98	0.65	0.59
	M_{h}	10	0.92	0.94	0.93
	z	7	0.77	0.60	0.63
COMPASS (D) [117]	$x_{\text {bj }}$	9	1.37	1.42	1.22
	M_{h}	10	0.45	0.37	0.38
	z	7	0.50	0.46	0.46
$\begin{aligned} & \text { STAR [121] } \\ & \sqrt{s}=200 \mathrm{GeV} \\ & R<0.3 \end{aligned}$	$M_{h}, \eta<0$	5	2.57	2.56	-
	$M_{h}, \eta>0$	5	1.34	1.55	-
	$P_{h T}, \eta<0$	5	0.98	1.00	-
	$P_{h T}, \eta>0$	5	1.73	1.74	-
	η	4	0.52	1.46	-
$\begin{aligned} & \text { STAR [97] } \\ & \sqrt{s}=500 \mathrm{GeV} \\ & R<0.7 \end{aligned}$	$M_{h}, \eta<0$	32	1.30	1.10	-
	$M_{h}, \eta>0$	32	0.81	0.78	-
	$P_{h T}, \eta>0$	35	1.09	1.07	-
	η	7	2.97	1.83	-
ETMC $\delta u[77]$	-	1	0.71	-	-
ETMC δd [77]	-	1	1.02	-	-
PNDME δu [71]	-	1	8.68	-	-
PNDME δd [71]	-	1	0.04	-	-
Total $\chi_{\text {red }}^{2}\left(N_{\text {dat }}\right)$			1.01 (1475)	0.98 (1471)	0.96 (1341)

TENSOR CHARGE

x

- The experimental measurements are sensitive to the x-dependence of the transversity PDFs, not the full moment like the lattice data (EIC and JLab are needed)
- JAM3D* and JAMDiFF agree on the x-dependence of transversity (nontrivial since the lattice data only constrains the full moment of the transversity PDFs)
- JAM3D* and JAMDiFF can successfully include lattice QCD data on the tensor charges in the analyses, thus showing for the first time the universal nature of all available information on transversity and the tensor charges of the nucleon

IMPACT OF THE EIC

GENERATED EIC PSEUDODATA

L. Gamberg, Z. Kang, D. Pitonyak, A. Prokudin, N. Sato, R.Seidl, Phys.Lett.B 816 (2021)

EIC Pseudo-data			
Observable	Reactions	CM Energy (\sqrt{S})	$N_{\text {pts. }}$
Collins (SIDIS)	$e+p^{\uparrow} \rightarrow e+\pi^{ \pm}+X$	141 GeV	$\begin{aligned} & 756\left(\pi^{+}\right) \\ & 744\left(\pi^{-}\right) \end{aligned}$
		63 GeV	$\begin{aligned} & 634\left(\pi^{+}\right) \\ & 619\left(\pi^{-}\right) \end{aligned}$
		45 GeV	$\begin{aligned} & 537\left(\pi^{+}\right) \\ & 556\left(\pi^{-}\right) \end{aligned}$
		29 GeV	$\begin{aligned} & 464\left(\pi^{+}\right) \\ & 453\left(\pi^{-}\right) \end{aligned}$
	$e+{ }^{3} H e^{\uparrow} \rightarrow e+\pi^{ \pm}+X$	85 GeV	$\begin{aligned} & 647\left(\pi^{+}\right) \\ & 650\left(\pi^{-}\right) \end{aligned}$
		63 GeV	$\begin{aligned} & 622\left(\pi^{+}\right) \\ & 621\left(\pi^{-}\right) \end{aligned}$
		29 GeV	$\begin{aligned} & 461\left(\pi^{+}\right) \\ & 459\left(\pi^{-}\right) \end{aligned}$
		Total EIC $N_{\text {pts }}$	8223

Assumed accumulated luminosity $10 \mathrm{fb}^{-1}, 70 \%$ polarization, conservatively accounted for detector smearing and acceptance effects

EIC IMPACT

L. Gamberg, Z. Kang, D. Pitonyak, A. Prokudin, N. Sato, R.Seidl, Phys.Lett.B 816 (2021)

JAM20: Cammarota, Gamberg, Kang, Miller,
Pitonyak, Prokudin, Rogers, Sato, Phys.Rev.D 102 (2020)
EIC data will significantly reduce uncertainties on transversity PDF (and Collins FF)

EIC IMPACT

L. Gamberg, Z. Kang, D. Pitonyak, A. Prokudin, N. Sato, R.Seidl, Phys.Lett.B 816 (2021)

EIC data (combination of p and ${ }^{3} \mathrm{He}$) will allow extraction of the tensor charge at the level of precision of current lattice QCD calculations

TENSOR CHARGE AT THE EIC AND JLAB

L. Gamberg, Z. Kang, D. Pitonyak, A. Prokudin, N. Sato, R.Seidl, Phys.Lett.B 816 (2021)

- EIC and JLab 12 data will allow to have complementary information on tensor charge to test the consistency of the extraction and expand the kinematical region

CONCLUSIONS

Zeroing in on a Fundamental Property of the Proton's Internal Dynamics

Nuclear Physics » Zeroing in on a Fundamental Property of the Proton’s Internal Dynamics

(3) A proton with transverse spin and quarks inside also with transverse spins. The tensor charge can be calculated for "up" and
. "down" quarks by various methods to quantify their total transverse spin in the proton (inset figure).

COLLABORATION

Chris Cocuzza

Andreas Metz

Daniel Pitonyak

Nobuo Sato

Leonard Gamberg

Wally Melnitchouk

Zhongbo Kang

CONCLUSIONS

- The tensor charges of the nucleon are quantities of particular interest - they are fundamental properties of the nucleon that have connections to QCD phenomenology, ab initio lattice QCD computations, model calculations, and low-energy beyond the Standard Model studies (e.g., beta decay, EDM)
- We have performed separate QCD global analyses of TSSAs in TMD/collinear twist-3 single-hadron observables and in dihadron fragmentation measurements, also studying the role of lattice QCD in our fits
- Recent analyses by the JAM Collaboration show agreement between single-hadron and dihadron approaches for extracting transversity as well as compatibility with lattice QCD tensor charges, thus showing for the first time the universal nature of all this information
- The EIC will play a transformative role in our understanding of the spin structure of the nucleon

BACK UP

FF

$$
\begin{aligned}
D_{1}^{h / q}\left(z, \vec{P}_{\perp}^{2}\right)=\frac{1}{N_{c}} \frac{\mathbf{1}}{\boldsymbol{4 z}} \sum_{X} \int \frac{d \xi^{+} d^{2} \vec{\xi}_{\perp}}{(2 \pi)^{3}} e^{i k^{-} \xi^{+}} & \operatorname{Tr}\left[\langle 0| \mathcal{W}(\infty, \xi) \psi_{q}\left(\xi^{+}, 0^{-}, \vec{\xi}_{\perp}\right)|P ; X\rangle\right. \\
& \left.\times\langle P ; X| \bar{\psi}_{q}\left(0^{+}, 0^{-}, \overrightarrow{0}_{\perp}\right) \mathcal{W}(0, \infty)|0\rangle \gamma^{-}\right]
\end{aligned}
$$

This prefactor is key to the number density interpretation of single-hadron FFs \rightarrow allows us to introduce the number operator when deriving the number sum rule

$$
\hat{N} \equiv \sum_{h} \int \frac{d P^{-} d^{2} \vec{P}_{\perp}}{(2 \pi)^{3} 2 P^{-}} \hat{a}_{h}^{\dagger} \hat{a}_{h}=\sum_{h} \int \frac{d z d^{2} \vec{P}_{\perp}}{(2 \pi)^{3} 2 z} \hat{a}_{h}^{\dagger} \hat{a}_{h}
$$

DIFF

$$
\Delta_{\alpha \beta}^{h_{1} h_{2} / i}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}, \vec{P}_{2 \perp}\right)=\left.\frac{1}{N_{i}} \underbrace{}_{X} \int \frac{d \xi^{+} d^{2} \vec{\xi}_{\perp}}{(2 \pi)^{3}} e^{i k \cdot \xi} \mathcal{O}_{\alpha \beta}^{h_{1} h_{2} / i}(\xi)\right|_{\xi^{-}=0}
$$

quark fragmentation $\left(N_{i}=N_{c}\right)$

$$
\begin{aligned}
\mathcal{O}_{\alpha \beta}^{h_{1} h_{2} / q}(\xi)= & \langle 0| \mathcal{W}(\infty, \xi) \psi_{q, \alpha}\left(\xi^{+}, 0^{-}, \vec{\xi}_{\perp}\right)\left|P_{1}, P_{2} ; X\right\rangle \\
& \times\left\langle P_{1}, P_{2} ; X\right| \bar{\psi}_{q, \beta}\left(0^{+}, 0^{-}, \overrightarrow{0}_{\perp}\right) \mathcal{W}(0, \infty)|0\rangle
\end{aligned}
$$

gluon fragmentation ($N_{i}=N_{c}{ }^{2}-1$)

$$
\begin{aligned}
\mathcal{O}_{\alpha \beta}^{h_{1} h_{2} / g}(\xi)= & \langle 0| \mathcal{W}^{b a}(\infty, \xi) F_{+\alpha}^{a}\left(\xi^{+}, 0^{-}, \vec{\xi}_{\perp}\right)\left|P_{1}, P_{2} ; X\right\rangle \\
& \times\left\langle P_{1}, P_{2} ; X\right| F_{+\beta}^{c}\left(0^{+}, 0^{-}, \overrightarrow{0}_{\perp}\right) \mathcal{W}^{c b}(0, \infty)|0\rangle
\end{aligned}
$$

DIFF

$$
\frac{1}{64 \pi^{3} z_{1} z_{2}} \operatorname{Tr}\left[\Delta^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}, \vec{P}_{2 \perp}\right) \gamma^{-}\right]=D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}^{2}, \vec{P}_{2 \perp}^{2}, \vec{P}_{1 \perp} \cdot \vec{P}_{2 \perp}\right)
$$

This prefactor is key to the number density interpretation of dihadron FFs (see also Majumder, Wang (2004)) because in order to prove a number sum rule we need to introduce the number operator separately for each hadron ($j=1,2$)

$$
\hat{N}_{h_{j}} \equiv \int \frac{d P_{j}^{-} d^{2} \vec{P}_{j \perp}}{(2 \pi)^{3} 2 P_{j}^{-}} \hat{a}_{h_{j}}^{\dagger} \hat{a}_{h_{j}}=\int \frac{d z_{j} d^{2} \vec{P}_{j \perp}}{(2 \pi)^{3} 2 z_{j}} \hat{a}_{h_{j}}^{\dagger} \hat{a}_{h_{j}}
$$

$$
\begin{aligned}
\frac{1}{64 \pi^{3} z_{1} z_{2}} \operatorname{Tr}\left[\Delta^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}, \vec{P}_{2 \perp}\right) \gamma^{-}\right]= & D_{1}^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}^{2}, \vec{P}_{2 \perp}^{2}, \vec{P}_{1 \perp} \cdot \vec{P}_{2 \perp}\right) \\
\frac{1}{64 \pi^{3} z_{1} z_{2}} \operatorname{Tr}\left[\Delta^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}, \vec{P}_{2 \perp}\right) \gamma^{-} \gamma_{5}\right]= & -\frac{\epsilon_{\perp}^{i j} R_{\perp}^{i} P_{h \perp}^{j}}{z M_{h}^{2}} G_{1}^{\perp h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}^{2}, \vec{P}_{2 \perp}^{2}, \vec{P}_{1 \perp} \cdot \vec{P}_{2 \perp}\right) \\
\frac{1}{64 \pi^{3} z_{1} z_{2}} \operatorname{Tr}\left[\Delta^{h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}, \vec{P}_{2 \perp}\right) i \sigma^{i-} \gamma_{5}\right]= & -\frac{\epsilon_{\perp}^{i j} R_{\perp}^{j}}{M_{h}} H_{1}^{\varangle^{\prime} h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}^{2}, \vec{P}_{2 \perp}^{2}, \vec{P}_{1 \perp} \cdot \vec{P}_{2 \perp}\right) \\
& +\frac{\epsilon_{\perp}^{i j} P_{h \perp}^{j}}{z M_{h}} H_{1}^{\perp^{\prime} h_{1} h_{2} / q}\left(z_{1}, z_{2}, \vec{P}_{1 \perp}^{2}, \vec{P}_{2 \perp}^{2}, \vec{P}_{1 \perp} \cdot \vec{P}_{2 \perp}\right)
\end{aligned}
$$

NB: number density interpretation holds not only for unpolarized quarks (γ^{-}projection) but also for longitudinally ($\gamma^{-} \gamma^{5}$ projection) and transversely (io ${ }^{i} \gamma^{5}$ projection) polarized quarks
$>$ Experimental measurements are sensitive to the so-called "extended" DiFFs where k_{T} (and usually ζ) is integrated out

$$
D_{1}^{h_{1} h_{2} / i}\left(z, M_{h}\right) \equiv \frac{\pi}{2} M_{h} \int_{-1}^{1} d \zeta\left(1-\zeta^{2}\right) D_{1}^{h_{1} h_{2} / i}\left(z, \zeta, \vec{R}_{T}^{2}\right)
$$

is a number density in $\left(z, M_{h}\right)$

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow\left(h_{1} h_{2}\right) X \\
& \qquad \frac{d \sigma}{d z d M_{h}}=\frac{4 \pi N_{c} \alpha_{\mathrm{em}}^{2}}{3 Q^{2}} \sum_{q} e_{q}^{2} D_{1}^{h_{1} h_{2} / q}\left(z, M_{h}\right) \\
& \text { partonic cross section for } e^{+} e^{-} \rightarrow \gamma \rightarrow q \bar{q}
\end{aligned}
$$

This is exactly the structure $d \sigma$ should have if D_{1} has a number density interpretation

LATIICE VS DATA

STAR 200 GeV data have a preference for a large $h_{u v}$ at large x , while the COMPASS proton data and STAR 500 GeV data prefer a smaller $h_{u v}$. In such a situation where there are competing preferences the choice of likelihood function and prior do not guarantee that the fits overlap within statistical uncertainties.

JAM METHODOLOGY

$$
\mathcal{L}(\boldsymbol{a}, \text { data })=\exp \left(-\frac{1}{2} \chi^{2}(\boldsymbol{a}, \text { data })\right)
$$

$$
\mathcal{P}(\boldsymbol{a} \mid \text { data }) \sim \mathcal{L}(\boldsymbol{a}, \text { data }) \pi(\boldsymbol{a})
$$

