Workshop: Precision QCD Predictions for ep Physics at the EIC (II)

Sep 18 – 22, 2023 CFNS, Stony Brook University

Explore Proton's Quark/Gluon Structure at the EIC without Breaking it

Challenges:

QCD at femto-scale (0.1fm-10fm) – Seeing quarks and gluons inside a proton without breaking it

G Factorization:

Extracting the proton's internal distributions of quarks and gluons from data of lepton-hadron collisions

□ Nuclear femtography:

Pixelating the spatial distribution of quarks and gluons inside a proton in slices of the momentum fraction x

Summary and Outlook

In collaboration with Zhite Yu, Nobuo Sato, ... and the QuantOm Collaboration (a SciDAC project)

Jianwei Qiu Jefferson Lab, Theory Center

Office of Science

QCD Landscape of Nucleons and Nuclei

1

QCD Landscape of Nucleons and Nuclei

"See" Internal Structure of Hadron without seeing quarks/gluons?

3D hadron structure:

NO quarks and gluons can be seen in isolation!

"See" Internal Structure of Hadron without seeing quarks/gluons?

3D hadron structure:

NO quarks and gluons can be seen in isolation!

□ If the nucleon is broken, e.g., in SIDIS, ...

- Measured k_{τ} is NOT the same as k_{τ} of the confined motion!
- Too larger Q² could weaken our precision to probe the true hadron structure!

4

"See" Internal Structure of Hadron without seeing quarks/gluons?

3D hadron structure:

□ If the nucleon is broken, e.g., in SIDIS, ...

Transverse momentum Broadening from the shower:

 $\begin{array}{l} \Delta k_T^2 \propto \Lambda_{\rm QCD}^2 \\ \times \alpha_s(C_F, C_A) \\ \times \log(Q^2/\Lambda_{\rm QCD}^2) \\ \times \log(s/Q^2) \end{array} \gtrsim 1 \end{array}$

Structure information can be diluted by the collision induced shower!

Jefferson Lab

- Measured k_{τ} is NOT the same as k_{τ} of the confined motion!
- Too larger Q² could weaken our precision to probe the true hadron structure!

Challenges for Exploring Internal Structure of Hadron without Breaking it

□ But, there is NO elastic "color" form factor!

No Proton "Radius" in color charge distribution!

Challenges for Exploring Internal Structure of Hadron without Breaking it

□ But, there is NO elastic "color" form factor!

3D hadron tomography:

Generalized "form factor" for quark and gluon "density" distribution Generalized PDFs (GPDs) – without breaking the proton

$$F_{q/h}(x,\xi,t)$$
 skewness $\xi = \frac{(p-p')^+}{(p+p')^+}$ $t = (p-p')^2$

F.T. to get spatial distribution of quark/gluon density, quark/gluon correlations, ...

No Proton "Radius" in color charge distribution!

Generalized Parton Distributions (GPDs)

Definition:

$$\begin{split} F^{q}(x,\xi,t) &= \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle p' | \bar{q}(z^{-}/2) \gamma^{+}q(-z^{-}/2) | p \rangle \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \gamma^{+}u(p) - E^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m}u(p) \right], \\ \widetilde{F}^{q}(x,\xi,t) &= \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle p' | \bar{q}(z^{-}/2) \gamma^{+}\gamma_{5}q(-z^{-}/2) | p \rangle \\ &= \frac{1}{2P^{+}} \left[\widetilde{H}^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \gamma^{+}\gamma_{5}u(p) - \widetilde{E}^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \frac{\gamma_{5}\Delta^{+}}{2m}u(p) \right]. \end{split}$$

D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes, J. Hořejši, Fortsch. Phys. 42 (1994) 101

 $P^{+} = \frac{p^{+} + p'^{+}}{2}$ $\Delta = p - p' \qquad t = \Delta^{2}$

Similar definition for gluon GPDs

Generalized Parton Distributions (GPDs)

Definition:

9

$$\begin{split} F^{q}(x,\xi,t) &= \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle p' | \bar{q}(z^{-}/2) \gamma^{+}q(-z^{-}/2) | p \rangle \\ &= \frac{1}{2P^{+}} \left[H^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \gamma^{+}u(p) - E^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m}u(p) \right] \\ \widetilde{F}^{q}(x,\xi,t) &= \int \frac{\mathrm{d}z^{-}}{4\pi} e^{-ixP^{+}z^{-}} \langle p' | \bar{q}(z^{-}/2) \gamma^{+}\gamma_{5}q(-z^{-}/2) | p \rangle \\ &= \frac{1}{2P^{+}} \left[\widetilde{H}^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \gamma^{+}\gamma_{5}u(p) - \widetilde{E}^{q}(x,\xi,t) \, \bar{u}\left(p'\right) \frac{\gamma_{5}\Delta^{+}}{2m}u(p) \right]. \end{split}$$

Combine <u>*PDF*</u> and <u>*Distribution Amplitude* (DA):</u>

Forward limit $\xi = t = 0$: $H^q(x, 0, 0) = q(x)$, $\tilde{H}^q(x, 0, 0) = \Delta q(x)$

D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes, J. Hořejši, Fortsch. Phys. 42 (1994) 101

$$P^{+} = \frac{p^{+} + p'^{+}}{2}$$
$$\Delta = p - p' \qquad t = \Delta^{2}$$

Jefferson Lab

Similar definition for gluon GPDs

Properties of GPDs - I

□ Impact parameter dependent parton density distribution:

$$q(x,b_{\perp},Q) = \int d^2 \Delta_{\perp} e^{-i\Delta_{\perp} \cdot b_{\perp}} H_q(x,\xi=0,t=-\Delta_{\perp}^2,Q)$$

• Quark density in $dx d^2 \boldsymbol{b}_T$

Properties of GPDs - I

Impact parameter dependent parton density distribution: $q(x,b_{\perp},Q) = \int d^2 \Delta_{\perp} e^{-i\Delta_{\perp} \cdot b_{\perp}} H_q(x,\xi=0,t=-\Delta_{\perp}^2,Q)$ Quark density in $dx d^2 b_T$ Measurement of p' fixes (t,ξ) x = momentum flowTomographic image of hadron How fast does How far does glue between the pair glue density fall? in slice of x density spread? × b_x=? Slice in (x,Q) 0.2 0.15 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 b_v (fm) 0.1 $\langle q_{\perp}^N \rangle \equiv \int db_{\perp} b_{\perp}^N q(x, b_{\perp}, Q)$ Modeled by 0.05 -1 M. Burkdart, -0.5 0.5 PRD 2000 b_{\perp} (fm)

Proton radii from quark and gluon spatial density distribution, $r_q(x) \& r_g(x)$

Properties of GPDs - I

□ Impact parameter dependent parton density distribution:

$$q(x,b_{\perp},Q) = \int d^2 \Delta_{\perp} e^{-i\Delta_{\perp} \cdot b_{\perp}} H_q(x,\xi=0,t=-\Delta_{\perp}^2,Q)$$

Quark density in $\mathrm{d}x\,\mathrm{d}^2oldsymbol{b}_T$

p' p' $Measurement of p' fixes (t, \xi)$ x = momentum flow between the pair

- Should $r_q(x) > r_g(x)$, or vice versa?
- Could $r_g(x)$ saturates as $x \to 0$
- How do they compare with known radius (EM charge radius, mass radius, ...), & why?
- How the image correlate to hadron spin, ... ?

QCD energy-momentum tensor:

Ji, PRL78, 1997

$$T^{\mu\nu} = \sum_{i=q,g} T_i^{\mu\nu} \quad \text{with} \quad T_q^{\mu\nu} = \bar{\psi}_q \, i\gamma^{(\mu} \overleftrightarrow{D}^{\nu)} \, \psi_q - g^{\mu\nu} \bar{\psi}_q \left(i\gamma \cdot \overleftrightarrow{D} - m_q \right) \psi_q \quad \text{and} \quad T_g^{\mu\nu} = F^{a,\mu\eta} F^{a,\,\mu\nu} + \frac{1}{4} g^{\mu\nu} \left(F^a_{\rho\eta} \right)^2$$

Gravitational" form factors:

$$\langle p' | T_i^{\mu\nu} | p \rangle = \bar{u}(p') \left[A_i(t) \frac{P^{\mu} P^{\nu}}{m} + J_i(t) \frac{i P^{(\mu} \sigma^{\nu)\Delta}}{2m} + D_i(t) \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2}{4m} + m \, \bar{c}_i(t) \, g^{\mu\nu} \right] u(p)$$

Connection to GPD moments:

$$\int_{-1}^{1} dx \, x \, F_i(x,\xi,t) \propto \langle p'|T_i^{++}|p\rangle \quad \propto \quad \bar{u}(p') \begin{bmatrix} \left(A_i + \xi^2 D_i\right) \gamma^+ + \left(B_i - \xi^2 D_i\right) \frac{i\sigma^{+\Delta}}{2m} \end{bmatrix} u(p)$$
$$\int_{-1}^{1} dx \, x \, H_i(x,\xi,t) \quad \int_{-1}^{1} dx \, x \, E_i(x,\xi,t)$$

□ Angular momentum sum rule:

$$J_i = \lim_{t \to 0} \int_{-1}^{1} dx \, x \left[H_i(x,\xi,t) + E_i(x,\xi,t) \right]$$

i = q, g

3D tomography Relation to GFF Angular Momentum $C_i(t) \leftrightarrow D_i(t)/4$

Related to pressure & stress force inside h

Polyakov, schweitzer, Inntt. J. Mod. Phys. A33, 1830025 (2018) Burkert, Elouadrhiri , Girod Nature 557, 396 (2018)

x-dependence of GPDs!

Jefferson Lab

Need to know the x-dependence of GPDs to construct the proper moments!

Exclusive Diffractive Processes for Extracting GPDs

 \Box Hit the proton hard without breaking it \Rightarrow Diffractive scattering to keep proton intact

HERA discovery:

~ 10-15% of HERA events with the Proton stayed intact

Exclusive Diffractive Processes for Extracting GPDs

 \Box Hit the proton hard without breaking it \Rightarrow Diffractive scattering to keep proton intact

HERA discovery:

~ 10-15% of HERA events with the Proton stayed intact

□ Known exclusive processes for extracting GPDs:

Imaging the quarks at a Future EIC (White Paper)

Effective "proton radius" in terms of quark distributions as a function of x_B

Exclusive vector meson production:

How well can we infer the (x, ξ ,t) dependence of GPDs from the EIC data?

Amplitude nature: $x \sim \text{loop momentum}$

$$i\mathcal{M} \propto \int_{-1}^{1} \mathrm{d}\boldsymbol{x} \, \frac{F(\boldsymbol{x},\xi,t)}{\boldsymbol{x}-\xi+i\varepsilon} \equiv "F_0(\xi,t)"$$

- also true for most other processes
- *x*-dependence is only constrained by a "moment"
- *x*-integration decouples from external Q²

NO full *x*-dependence for given t and ξ

How well can we infer the (x, ξ ,t) dependence of GPDs from the EIC data?

Amplitude nature: $x \sim \text{loop momentum}$

PRD56 (1997) 5524 PRD58 (1998) 094018 PRD59 (1999) 074009

- also true for most other processes
- *x*-dependence is only constrained by a "moment"
- *x*-integration decouples from external Q²

NO full *x***-dependence for given t and** ξ

"Shadow GPDs"

PRD103 (2021) 114019

$$\begin{split} F(x,\xi,t) &\to F(x,\xi,t) + S(x,\xi,t) \\ & \text{with} \quad \int_{-1}^{1} \mathrm{d}x \, \frac{S(x,\xi,t)}{x-\xi+i\varepsilon} = 0 \end{split}$$

Blue and dashed Fit the same CFFs !

Jefferson Lab

Inclusive Process vs. Exclusive Process

<u>Cross section</u>: Cut diagrams

$$\sigma_{\rm DIS} \simeq \int_{\boldsymbol{x}_B}^1 \mathrm{d}\boldsymbol{x} f(\boldsymbol{x}) \,\hat{\sigma}(\boldsymbol{x}/x_B)$$

- $PDF \sim probability$
- At LO: $x = x_B$
- Beyond LO: $x \in [x_B, 1]$

x-dependence: Part of measurement

$$\mathcal{M}_{\mathrm{DVCS}}(\xi, t) \simeq \int_{-1} \mathrm{d}x \, F(x, \xi, t) \, \hat{\mathcal{M}}(x, \xi)$$

- GPD ~ amplitude
- $k^+ = (x + \xi) P^+$ is loop momentum
- At any order: $x \in [-1, 1]$

<u>*x-dependence*</u>: Hard to measure

 \Box Two-stage diffractive $2 \rightarrow 3$ hard exclusive processes:

Single diffractive – keep the hadron intact:

Qiu & Yu, JHEP 08 (2022) 103, PRD 107 (2023) 1 2305.15397 (PRL in press)

Qiu & Yu, JHEP 08 (2022) 103, Two-stage diffractive $2 \rightarrow 3$ hard exclusive processes: PRD 107 (2023) 1 2305.15397 (PRL in press) Single diffractive – keep the hadron intact: $h(p) \to h'(p') + A^*(p_1 = p - p')$ $C(q_1)$ h'(p')h(p) $A^*(p_1 = p - p')$ Virtuality of $B(p_2) = e, \gamma, \pi$ exchanged state: $t = (p - p')^2 \equiv p_1^2$ Hard probe: $2 \rightarrow 2$ high q_T exclusive process: $D(q_2)$ $A^*(p_1) + B(p_2) \to C(q_1) + D(q_2)$

Probing time: $\sim 1/|q_{1T}| \approx 1/|q_{2T}|$

 \Box Two-stage diffractive $2 \rightarrow 3$ hard exclusive processes:

Single diffractive – keep the hadron intact:

Qiu & Yu, JHEP 08 (2022) 103, PRD 107 (2023) 1 2305.15397 (PRL in press)

 $h(p) \to h'(p') + A^*(p_1 = p - p')$ $C(q_1)$ h'(p')h(p) $A^*(p_1 = p - p')$ Virtuality of $B(p_2) = e, \gamma, \pi$ exchanged state: $t = (p - p')^2 \equiv p_1^2$ $D(q_2)$ Hard probe: $2 \rightarrow 2$ high q_T exclusive process: $A^*(p_1) + B(p_2) \to C(q_1) + D(q_2)$ The single diffractive $2 \rightarrow 3$ Probing time: $\sim 1/|q_{1T}| \approx 1/|q_{2T}|$ exclusive hard processes (SDHEP): **Necessary condition for QCD factorization:** $h(p) + B(p_2) \rightarrow h'(p') + C(q_1) + D(q_2)$ Lifetime of $A^*(p_1)$ is much longer A 2-scale observable! $|q_{1_T}| = |q_{2_T}| \gg \sqrt{-t}$ than collision time of the probe! Jefferson Lab Not necessarily sufficient!

son Lab

Symmetry of producing non-vanishing H

General Discussion on n=1 state: γ^*

□ Exchange of a virtual photon – "GPD background":

Qiu & Yu, PRD 107 (2023) 1

General Discussion on n=1 state: γ^*

Exchange of a virtual photon – "GPD background":

Qiu & Yu, PRD 107 (2023) 1

QCD Facts:

50 years of QCD 2212.11107

Any scattering cross section with identified hadron(s) cannot be calculated fully in QCD perturbation theory

QCD Facts:

50 years of QCD 2212.11107

- Any scattering cross section with identified hadron(s) cannot be calculated fully in QCD perturbation theory
- QCD factorization is a controllable approximation with following 3 key features:
 - All process-dependent nonperturbative contributions to factorizable cross sections are suppressed by powers of 1/(RQ), which could be neglected if the hard scale Q is sufficiently large;
 - All factorizable nonperturbative contributions are process independent, representing the characteristics of identified hadron(s); and
 - Process dependence of factorizable contributions is perturbatively calculable from partonic scattering at the short-distance.
- Predictions follow when cross sections with different hard scatterings but the same nonperturbative longdistance effect of identified hadron are compared

QCD Facts:

50 years of QCD 2212.11107

Qiu & Yu, JHEP 08 (2022) 103,

- Any scattering cross section with identified hadron(s) cannot be calculated fully in QCD perturbation theory
- QCD factorization is a controllable approximation with following 3 key features:
 - All process-dependent nonperturbative contributions to factorizable cross sections are suppressed by 0 powers of 1/(RQ), which could be neglected if the hard scale Q is sufficiently large;
 - All factorizable nonperturbative contributions are process independent, representing the characteristics of Ο identified hadron(s); and
 - Process dependence of factorizable contributions is perturbatively calculable from partonic scattering at Ο the short-distance.
- **Predictions follow** when cross sections with different hard scatterings but the same nonperturbative longdistance effect of identified hadron are compared

Lessons learned from QCD factorization for hadronic collisions (e.g., Drell-Yan):

Collins, Soper, Sterman 1989

Leading pinch surface

Hard: all lines off-shell by Q

Collinear:

♦ lines collinear to A and B

♦ One "physical parton" per hadron

Soft: all components are soft

Lessons learned from QCD factorization for hadronic collisions (e.g., Drell-Yan):

Collins, Soper, Sterman 1989

Leading pinch surface

Collinear and longitudinally polarized gluons:

Easy to factorize:

- Apply Ward Identity to decouple them from the hard part
- Reconnect them the gauge links

Hard: all lines off-shell by Q

Collinear:

- ♦ lines collinear to A and B
- ♦ One "physical parton" per hadron

Soft: all components are soft

Lessons learned from QCD factorization for hadronic collisions (e.g., Drell-Yan):

Leading pinch surface

Collinear and longitudinally polarized gluons:

Easy to factorize:

- Apply Ward Identity to decouple them from the hard part
- Reconnect them the gauge links 0

Trouble with the soft gluons:

Pinched in Glauber regime

Hard: all lines off-shell by Q

Collinear:

- \diamond lines collinear to A and B
- ♦ One "physical parton" per hadron

Soft: all components are soft

Solution:

- Sum over all final states,
- Cancelation of all poles in one-half plane 0 (remove pinches)

Difficulty for exclusive processes:

No final-states to sum!

Glauber pinch for SDHEP, e.g. $\pi^-(p_\pi) + P(p) \rightarrow \gamma(q_1) + \gamma(q_2) + N(p')$

Glauber pinch for SDHEP, e.g. $\pi^-(p_\pi) + P(p) \rightarrow \gamma(q_1) + \gamma(q_2) + N(p')$ $\lambda \sim m_\pi/Q, \quad Q \sim q_T$

Transverse component contribute to the leading region!

Factorization for SDHEP in the Two-stage Paradigm

□ Factorization for 2-parton channels (CO gluons are easy to factorize):

Qiu & Yu, JHEP 08 (2022) 103, PRD 107 (2023) 1

DGLAP region: Glauber pinch

Factorization for SDHEP in the Two-stage Paradigm

Qiu & Yu, JHEP 08 (2022) 103, PRD 107 (2023) 1

37

DGLAP region: Glauber pinch

□ Soft gluons cancel when coupling to color neutral hadrons:

PRD56 (1997) 5524; PRD58 (1998) 094018; PRD59 (1999) 074009

DVCS:

 $h(p) = \operatorname{Proton}(p), \ h'(p') = \operatorname{Proton}(p'), \ B(p_2) = \operatorname{electron}(p_2), \ C(q_1) = \operatorname{electron}(q_1), \ D(q_2) = \operatorname{photon}(q_2)$

Leading pinch region:

The x-integration is NOT sensitive to externally measured hard scale, q_T or Q^2 !

Jefferson Lab

What kind of process/observable could be sensitive to the x-dependence?

Create an entanglement between the internal x and an externally measured variable?

$$i\mathcal{M} \propto \int_{-1}^{1} \mathrm{d}\boldsymbol{x} \frac{F(\boldsymbol{x},\xi,t)}{x - x_p(\xi,\boldsymbol{q}) + i\varepsilon}$$

Change external *q* to sample different part of **x**.

Double DVCS (two scales):

$$x_p(\xi, q) = \xi\left(\frac{1-q^2/Q^2}{1+q^2/Q^2}\right) \to \xi \text{ same as DVCS if } q \to 0$$

What kind of process/observable could be sensitive to the x-dependence?

Create an entanglement between the internal x and an externally measured variable?

$$i\mathcal{M} \propto \int_{-1}^{1} \mathrm{d}x \frac{F(x,\xi,t)}{x - x_p(\xi,q) + i\varepsilon}$$
 Change external q to sample different part of \mathbf{x} .

Double DVCS (two scales):

$$x_p(\xi, q) = \xi\left(\frac{1-q^2/Q^2}{1+q^2/Q^2}\right) \to \xi \text{ same as DVCS if } q \to 0$$

Production of two back-to-back high pT particles (say, two photons):

 $\pi^{-}(p_{\pi}) + P(p) \rightarrow \gamma(q_{1}) + \gamma(q_{2}) + N(p')$ Hard scale: $q_{T} \gg \Lambda_{\text{QCD}}$ Soft scale: $t \sim \Lambda_{\text{OCD}}^{2}$

Qiu & Yu JHEP 08 (2022) 103

 $x \leftrightarrow q_T$

$$p$$
 p' q_1 p_{π} p_{π} q_2

$$\mathcal{M}(t,\xi,q_T) = \int_{-1}^{1} \mathrm{d}x \, F(x,\xi,t;\mu) \cdot C(x,\xi;q_T/\mu) + \mathcal{O}(\Lambda_{\mathrm{QCD}}/q_T) \longrightarrow \frac{\mathrm{d}\sigma}{\mathrm{d}t \, \mathrm{d}\xi \, \mathrm{d}q_T} \sim |\mathcal{M}(t,\xi,q_T)|^2$$

$$q_T \text{ distribution is "conjugate" to x distribution}$$

Simplified GK models:

$$H_{pn}(x,\xi,t) = \theta(x) \, x^{-0.9 \, (t/\text{GeV}^2)} \frac{x^{\rho} (1-x)^{\tau}}{B(1+\rho,1+\tau)}$$
$$\widetilde{H}_{pn}(x,\xi,t) = \theta(x) \, x^{-0.45 \, (t/\text{GeV}^2)} \frac{1.267 \, x^{\rho} (1-x)^{\tau}}{B(1+\rho,1+\tau)}$$

- Neglect E, \tilde{E} . Neglect evolution effect.
- Tune (ρ, τ) to control x shape.
- Fix DA: $D(z) = N z^{0.63} (1-z)^{0.63}$

Goloskokov, Kroll hep-ph/0501242 arXiv: 0708.3569 arXiv: 0906.0460 Qiu & Yu, arXiv:2305.15397

Enhanced Sensitivity on x-dependence of GPDs

Two-photon production: $\pi^-(p_\pi) + P(p) \rightarrow \gamma(q_1) + \gamma(q_2) + N(p')$ J-PARC, COMPASS Qiu & Yu, JHEP 08 (2022) 103

Enhanced Sensitivity on x-dependence of GPDs

D Pion-photon production: $\gamma(p_{\gamma}) + h(p) \rightarrow \pi^{\pm}(q_1) + \gamma(q_2) + h'(p')$

JLab-Hall D, other Halls & EIC with a quasi-photon beam

Exclusive Photo-Production of a $\pi \gamma$ Pair – Hall D at JLab

Polarization asymmetries

 $\frac{d\sigma}{d|t| d\xi d\cos\theta \, d\phi} = \frac{1}{2\pi} \frac{d\sigma}{d|t| d\xi d\cos\theta} \cdot \left[1 + \lambda_N \lambda_\gamma A_{LL} + \zeta A_{UT} \cos 2\left(\phi - \phi_\gamma\right) + \lambda_N \zeta A_{LT} \sin 2\left(\phi - \phi_\gamma\right)\right]$

$$\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta} = \pi\left(\alpha_e\alpha_s\right)^2\left(\frac{C_F}{N_c}\right)^2\frac{1-\xi^2}{\xi^2s^3}\Sigma_{UU}$$

$$\begin{split} \Sigma_{UU} &= |\mathcal{M}_{+}^{[\tilde{H}]}|^{2} + |\mathcal{M}_{-}^{[\tilde{H}]}|^{2} + |\widetilde{\mathcal{M}}_{+}^{[H]}|^{2} + |\widetilde{\mathcal{M}}_{-}^{[H]}|^{2}, \\ A_{LL} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\mathcal{M}_{+}^{[\tilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} + \mathcal{M}_{-}^{[\tilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} \right], \\ A_{UT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\widetilde{\mathcal{M}}_{+}^{[H]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} - \mathcal{M}_{+}^{[\tilde{H}]} \, \mathcal{M}_{-}^{[\tilde{H}]*} \right], \\ A_{LT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Im} \left[\mathcal{M}_{+}^{[\tilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} + \mathcal{M}_{-}^{[\tilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} \right]. \end{split}$$

Jefferson Lab

Qiu & Yu, arXiv:2305.15397

PRL (in press)

Exclusive Photo-Production of a $\pi \gamma$ Pair – Hall D at JLab

Exclusive Photo-Production of a $\pi \gamma$ Pair – Hall D at JLab

From cross sections to parton correlation functions (PDFs, TMDs, GPDs, ...)

Existing paradigm – histogram approach:

From cross sections to parton correlation functions (PDFs, TMDs, GPDs, ...)

From cross sections to parton correlation functions (PDFs, TMDs, GPDs, ...)

Event-based analysis?

Can we compare real vs synthetic events?

Why?

Physics

- Avoid histograms and minimize systematic uncertainties
- Avoid unfolding and use direct simulation at the event level

Vertex

Level Events

Optimize physics parameters

Detector

simulation

QuantOm Collaboration – a 5-year SciDAC project

□ Femtoscale Imaging of Nuclei using Exascale Platforms:

Pixelating hadron in terms of probabilities to find quarks and gluons in slices of the momentum fraction x

Module 1 **Event-level QCF inference framework** Noise Module 4 EIC Parameter Generator **Experimental** Jefferson Lab **Events** Parameters Event level Module 2 Discriminator Module 3 MCMC Idealized **Trial QCF** Trial PMD Theory Simulated Detector model Events Events model

Optimize QCF parameters (or pixelated images)

PMD: Particle Momentum Distribution - Observables QCF: Quantum Correlation Functions: PDFs, TMDs, GPDs, ...

NP: ANL(Lead), JLab, ODU, VT ASCR: FASTMath, RAPIDs

Exp Events (PMD):

- DIS:
 - 1 particle inclusive
- SIDIS:
 - 2 particle inclusive
- SDHEP:

3 particle exclusive

Generated Events:

Many templates from trial QCFs & trusted theory

Inference:

Optimized QCFs or pixelated images in trusted phase space

New regimes:

Go beyond the trusted phase

space

Summary and Outlook

GPDs are fundamental parton correlation functions of an "unbroken" hadron:

- Carry rich information on emergent hadron properties (mass, spin, ...) from QCD/parton dynamics
- Are responsible for the tomographic images of confined quarks and gluons inside a bound hadron
- Provide the much needed hints on how confined quarks/gluons respond to the probing scale, ...

Extracting their x-dependence from experimental observable(s) is non-trivial, but, full of opportunities, ...

SDHEP provides a reliable way to explore tomography of a hadron without breaking them:

- Covered all existing/known processes for extracting GPDs, plus ideas for new observables, ...
- Introduced new SDHEPs that could be more sensitive to the x-dependence of GPDs
- Angular modulation between diffractive plane and hard scattering plane could provide unique opportunity to separate various GPDs (similar to the separation of TMDs in SIDIS)
- Exclusive photoproduction at JLab and quasi-photoproduction at the EIC could provide excellent opportunities for extracting GPDs & their x-dependence, ...

Exclusive processes provide opportunities for exploring the GPDs and the confined phenomena of QCD

Why *single* diffractive?

Double diffractive process

Glauber pinch for diffractive scattering

Factorizable if all pion momentum flows into hard part

Both k_s^+ and $k_s^$ are pinched in Glauber region!

Break of factorization

Compare: Drell-Yan process at high twist:

Only the 1st sub-leading twist is factorizable!

Qiu & Sterman, NPB, 1991

