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Why 3D structure? – nucleon mass

Nucleon mass is largely from strong interaction:

which can be studied with QCD Hamiltonian,
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Quantum 

anomalous energy

X. Ji Phys. Rev. Lett. 74 1071 (1995) 
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Matrix element of EMT can be expressed as gravitational form factors:

Energy-momentum tensor form factors

X. Ji Phys. Rev. Lett. 78, 610 (1997)
Quantum anomalous energy and mass form factors:

Gravitational form factors are fundamental for nucleon structures! 
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Why 3D structure? – nucleon spin

quark spin

Naïve quark model

gluon spin

gluon contribution

quark orbital AM gluon orbital AM

transverse motion

Jaffe-Manohar sum rule

G. Wang et. al. Phys. Rev. D 106, 014512 (2022)
See also ETMC Collaboration Phys. Rev. D 101 9, 094513 (2020) 

R. Jaffe and A. Manohar
 Nucl. Phys. B 337, 509 (1990)
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Nucleon 3D structure with EIC

Finding 1: 

An EIC can uniquely address three profound questions about 

nucleons — neutrons and protons — and how they are assembled 

to form the nuclei of atoms:

• How does the mass of the nucleon arise? 

• How does the spin of the nucleon arise? 

• What are the emergent properties of dense systems of gluons? 
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3D distributions of quarks and gluons

Quarks/gluons 3D structure can be accessed by diffractive scattering.

charge distribution

Diffractive process is a classic approach to accessing the 3D structures.

D. Muller et. al. Fortsch.Phys. 42 101 (1994) 

X. Ji Phys. Rev. Lett. 78, 610 (1997)

elastic scattering

GPDs

generalized parton distribution
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3D mass & spin structures with GPDs

GPDs are 3D distributions unifying parton distributions and form factors

: parton momentum fraction

: skewness parameter – longitudinal momentum transfer 

: total momentum transfer squared 

GPDs reduce to form factors when integrated over x

Charge FFs Gravitational FFs

We cannot easily access GFFs in experiment, but we can access GPDs!

X. Ji, J. Phys. G 24 1181-1205 (1998) 
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3D mass & spin structures with GPDs

GPDs are 3D distributions unifying parton distributions and form factors

: parton momentum fraction

: skewness parameter – longitudinal momentum transfer 

: total momentum transfer squared 

GPDs also provide an intuitive 3D image of nucleon:

which contains information of nucleon spin structure, e. g. transverse spin

M. Burkardt, Int. J. Mod. Phys. A 18 173-208 (2003) 

3D quark/gluon dist.

Y. Guo et. al. Nucl. Phys. B 969 115440  (2021)



3D Structures from Experiment 
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Deeply virtual processes

Recall that diffractive processes can provide us access to the 3D structures.

X. Ji, Phys. Rev. D 55, 7114 (1997)

Deeply virtual Compton scattering

A.V. Radyushkin Phys. Lett. B 385 333-342 (1996) 
J. C. Collins et. al. Phys. Rev. D 56 2982-3006 (1997) 

Deeply virtual meson production

GPD GPD
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Deep exclusive measurements

HERA 

(Hadron-Elektron-Ringanlage)

• Col. w. electron/positron beam

• DVCS and DVMP measurements

• Running ended in 2007

CERN

(European Organization for 

Nuclear Research)

COMPASS

• FT w. Muon/antimuon beam 

• DVCS measurements (2016)

• Running ended in 2022

CEBAF

(Continuous Electron Beam 

Accelerator Facility)

Hall A, B, C and D

• FT with electron/photon beam 

• Large exclusive measurements

• Still are and will be running 

H1, ZEUS (Col), HERMES (FT)

EIC

(Electron-Ion Collider)

• High Lum. (100~1000 times HERA)

• Polarization configurations

• Plan to operate in the next decade
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DVCS is considered the golden channel to probe GPDs.

Quarks structures from DVCS

Clean final-state -- photon

Sensitive to quark GPDs 

Pros:

No gluon sensitivity at LO 

Flavor separation is hard

Cons: GPD

Shohini’s talk
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Plots in 2012 -> some recent update:

JLab has upgraded to 12 GeV  (2014)

Also considering upgrading to 20+ GeV

COMPASS with asymmetry  (2016)

EIC white paper arXiv:1212.1701
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DVCS measurements

Plots in 2012 -> some recent update:

JLab has upgraded to 12 GeV  (2014)

Also considering upgrading to 20+ GeV

COMPASS with asymmetry  (2016)

EIC white paper arXiv:1212.1701

EIC is essential for exploring the sea quarks and gluons!

JLab can access the valence structures well.
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DVCS probes the GPDs via the Compton form factors

Compton form factors and deconvolution

V. Bertone et. al. SciPost Phys.Proc. 8 (2022) 107

Deconvolution does not give a  
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DVCS probes the GPDs via the Compton form factors

Compton form factors and deconvolution

V. Bertone et. al. SciPost Phys.Proc. 8 (2022) 107

Deconvolution does not give a  

unique solution – inverse problem

Global analysis needed

Dr. Qiu’s talk
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Gluon 3D structures from experiment

Gluon can only be directly probed by strongly interacting particles – meson ...

Heavy meson preferred to suppress the intrinsic quark contributions.

Higher energy required. (Hard to reach with fixed target)

GPD GPD
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3D Structures with Lattice QCD
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From first-principle and systematically improvable.



67Yuxun Guo @ CFNS Stony Brook

Nucleon form factors on lattice

Lattice QCD is most efficient in capturing the feature of the whole nucleon.

Relatively easy so long as you can prepare a static nucleon on the lattice 
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Collected results from lattice community including ETMC, LHPC, Mainz, PACS, PNDME ,RQCD

Nucleon form factors on lattice
Isovector (axial) charge form factors with lattice QCD

Isovector (axial) gravitational form factors with lattice QCD

Gluon gravitational form factors

D. A. Pefkou et. al . 
Phys. Rev. D 105, 054509 (2022)
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Collected results from lattice community including ETMC, LHPC, Mainz, PACS, PNDME ,RQCD

Nucleon form factors on lattice

Many are almost impossible 

to get from experiments!

Isovector (axial) charge form factors with lattice QCD

Isovector (axial) gravitational form factors with lattice QCD

Gluon gravitational form factors

D. A. Pefkou et. al . 
Phys. Rev. D 105, 054509 (2022)
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Parton distributions on lattice

Measuring the real-time dynamics, on the other hand, is much harder on lattice.

Put operator here

Partons live on light front.

Boost external state

X. Ji et. al. Rev. Mod. Phys. 93 3, 035005 (2021) 

Large Momentum Effective Theory (LaMET)

Massive progresses have been made for PDFs/DAs. Here we focus on GPDs.
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Parton distributions on lattice

C. Alexandrou et. al. (ETMC)
Phys.Rev.Lett. 125 26, 262001 (2020) 

Huey-Wen Lin
Phys.Rev.Lett. 127 18, 182001 (2021) 

Isovector H GPDs Isovector H GPDs (skewness) Isovector Twist-3 GPDs

S. Bhattacharya et. al. 
PoS LATTICE2021 054 (2022)



3D GPD global analysis
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The high-dimensional nature of GPD requires composite inputs. 

Composite tasks for GPD study

Parton Distribution Function

NNPDF et al., Eur. Phys. J. C 77, 663 (2017) 

Deeply virtual exclusive processes

X. Ji, Phys. Rev. D 55, 7114 (1997)
A.V. Radyushkin, Phys. Lett. B 385 333 (1996) 

J. C. Collins et. al. Phys. Rev. D 56 2982 (1997) 
Review in M. Constantinou et. al. Prog. Part. Nucl. 
Phys. 121 103908 (2021). And references therein

Nucleon form factors from lattice

Huey-Wen Lin 
Phys. Rev. Lett. 127, 182001 (2021) 

C. Alexandrou et. al. (ETMC)
 Phys. Rev. Lett. 125, 262001 (2020) 

x-dependence from lattice
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The high-dimensional nature of GPD requires composite inputs. 

Composite tasks for GPD study

Parton Distribution Function

NNPDF et al., Eur. Phys. J. C 77, 663 (2017) 

Deeply virtual exclusive processes

X. Ji, Phys. Rev. D 55, 7114 (1997)
A.V. Radyushkin, Phys. Lett. B 385 333 (1996) 

J. C. Collins et. al. Phys. Rev. D 56 2982 (1997) 
Review in M. Constantinou et. al. Prog. Part. Nucl. 
Phys. 121 103908 (2021). And references therein

Nucleon form factors from lattice

Huey-Wen Lin 
Phys. Rev. Lett. 127, 182001 (2021) 

C. Alexandrou et. al. (ETMC)
 Phys. Rev. Lett. 125, 262001 (2020) 

x-dependence from lattice3D Quark-Gluon Tomography 
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Global GPD Global analysis efforts

B. Berthou et al. 
Eur. Phys. J. C 78 6, 478 (2018) 

K. Kumericki et al. 
Nucl. Phys. B 794 244-323 (2008) 

Machine Learning Approach

GUMP

Y. Guo et. al. JHEP 09 215 (2022) 
Y. Guo et. al. JHEP 05 150 (2023)

Eric Moffat et al. 
Phys. Rev. D 108 3, 036027 (2023) 

M. Almaeen et al. 
arxiv: 2207.10766 
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GPD global analysis

While each task faces its own challenge, the global analysis is the gatekeeper.

Parameterization of GPDs

Compute GPD observables

Constraints on GPDs

Compare and iterate 

▪ Both x & moment space with evolution 

▪ Various inputs from very different system

▪ Massive degrees of freedom

▪ Computation efficiency!
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Parameterization of GPD

We employ the established conformal partial wave expansion of GPD

D. Mueller and A. Schafer Nucl. Phys. B 739 1-59 (2006)

Advantages:

▪ Polynomiality condition:

▪ Conformal moments are (LO) multiplicatively renormalizable

X. Ji, J. Phys. G 24 1181-1205 (1998) 

I. Balitsky and V. Braun Nucl. Phys. B 311 541-584 (1989)

GPDs through Universal Moment Parameterization (GUMP)

Collaborators: Xiangdong Ji, Kyle Shiells, Gabriel Santiago, Jinghong Yang
Y. Guo et. al. JHEP 09 215 (2022) 
Y. Guo et. al. JHEP 05 150 (2023)
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Inputs for the global analysis

Experiments Lattice  

• PDFs from global analysis

- Polarized and unpolarized PDFs from JAM

• Charge form factors from global analysis

- YAHL global analysis of EM form factors 

- Flavor separation combing proton and neutron data 

• DVCS cross-section measurements

- Combined data from CLAS and Hall A (UU and LU)

- H1 experiments at HERA

JAM, Phys. Rev. D 106 3, L031502 (2022) 

Z. Ye et. Al., Phys. Lett. B 777 8-15 (2018) 

CLAS, Phys. Rev. Lett. 123 3, 032502 (2019) 
JLab Hall A, PoS Hadron2017 170 (2018) 

H1, Phys. Lett. B 681 391-399 (2009) 

• Different setups used in lattice simulations 

induce systematical uncertainties and deviations.

M. Constantinou et. al. Prog. Part. Nucl. Phys. 121 103908 (2021)

• Lattice form factors and GPDs from a single group.

C. Alexandrou et. al. Phys. Rev. Lett. 125 26, 262001 (2020) 
C. Alexandrou et. al. PoS LATTICE2021 250 (2022) 
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The extracted GPDs encounter degeneracy - the inverse problem.

Y. Guo et. al. JHEP 05 150 (2023)
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Extracted GPDs 

The extracted GPDs encounter degeneracy - the inverse problem.

Y. Guo et. al. JHEP 05 150 (2023)

The left-hand side does not constrain the x-dependence effectively.

There are undetermined degrees of freedom.
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Physical implications

The properties of GPDs at different skewness are unified. 

Gravitational FFs

Moving away from the near-forward region, more information will be stored in the DA-like region

Conjectured behavior based on the suppression of PDF-like region by the endpoints at |x|=1. 
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GFFs extraction

In the large-skewness approximation we have

Y. Guo et. al. Phys. Rev. D 108, 034003 (2023) 

They are related to the GFFs up to higher-moment contamination:

Potential GFFs extraction with 

such measurements! (with 

systematic uncertainties) 

Y. Guo et. al. arxiv: 2308.13006 
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Summary and outlook

Summary

The global analysis program has been built up.

1st global analysis with DVCS and lattice input.

Currently work on J/psi production and gluon.

Next-to-leading order effects seem important.

Outlook

Include gluon distribution (J/psi & others)

Implementing NLO evolutions.

Simultaneous quark and gluon extraction.



Thank you!


	Slide 1: Global analysis of GPDs with GUMP program
	Slide 2: Outline
	Slide 3: Why 3D structure? – nucleon mass
	Slide 4: Why 3D structure? – nucleon mass
	Slide 5: Energy-momentum tensor form factors
	Slide 6: Energy-momentum tensor form factors
	Slide 7: Energy-momentum tensor form factors
	Slide 8: Energy-momentum tensor form factors
	Slide 9: Energy-momentum tensor form factors
	Slide 10: Why 3D structure? – nucleon spin
	Slide 11: Why 3D structure? – nucleon spin
	Slide 12: Why 3D structure? – nucleon spin
	Slide 13: Why 3D structure? – nucleon spin
	Slide 14: Why 3D structure? – nucleon spin
	Slide 15: Why 3D structure? – nucleon spin
	Slide 16: Why 3D structure? – nucleon spin
	Slide 17: Nucleon 3D structure with EIC
	Slide 18: 3D distributions of quarks and gluons
	Slide 19: 3D distributions of quarks and gluons
	Slide 20: 3D distributions of quarks and gluons
	Slide 21: 3D distributions of quarks and gluons
	Slide 22: 3D distributions of quarks and gluons
	Slide 23: 3D mass & spin structures with GPDs
	Slide 24: 3D mass & spin structures with GPDs
	Slide 25: 3D mass & spin structures with GPDs
	Slide 26: 3D mass & spin structures with GPDs
	Slide 27: 3D mass & spin structures with GPDs
	Slide 28: 3D mass & spin structures with GPDs
	Slide 29: 3D mass & spin structures with GPDs
	Slide 30: 3D mass & spin structures with GPDs
	Slide 31: 3D mass & spin structures with GPDs
	Slide 32: 3D mass & spin structures with GPDs
	Slide 33: 3D mass & spin structures with GPDs
	Slide 34: 3D Structures from Experiment 
	Slide 35: Deeply virtual processes
	Slide 36: Deeply virtual processes
	Slide 37: Deeply virtual processes
	Slide 38: Deep exclusive measurements
	Slide 39: Deep exclusive measurements
	Slide 40: Deep exclusive measurements
	Slide 41: Deep exclusive measurements
	Slide 42: Quarks structures from DVCS
	Slide 43: Quarks structures from DVCS
	Slide 44: Quarks structures from DVCS
	Slide 45: Quarks structures from DVCS
	Slide 46: DVCS measurements
	Slide 47: DVCS measurements
	Slide 48: DVCS measurements
	Slide 49: DVCS measurements
	Slide 50: DVCS measurements
	Slide 51: Compton form factors and deconvolution
	Slide 52: Compton form factors and deconvolution
	Slide 53: Compton form factors and deconvolution
	Slide 54: Compton form factors and deconvolution
	Slide 55: Compton form factors and deconvolution
	Slide 56: Gluon 3D structures from experiment
	Slide 57: Gluon 3D structures from experiment
	Slide 58: Gluon 3D structures from experiment
	Slide 59: Gluon 3D structures from experiment
	Slide 60: Gluon 3D structures from experiment
	Slide 61: Gluon 3D structures from experiment
	Slide 62: Gluon 3D structures from experiment
	Slide 63: 3D Structures with Lattice QCD
	Slide 64: Lattice QCD 
	Slide 65: Lattice QCD 
	Slide 66: Lattice QCD 
	Slide 67: Nucleon form factors on lattice
	Slide 68: Nucleon form factors on lattice
	Slide 69: Nucleon form factors on lattice
	Slide 70: Parton distributions on lattice
	Slide 71: Parton distributions on lattice
	Slide 72: Parton distributions on lattice
	Slide 73: Parton distributions on lattice
	Slide 74: Parton distributions on lattice
	Slide 75: Parton distributions on lattice
	Slide 76: Parton distributions on lattice
	Slide 77: 3D GPD global analysis
	Slide 78: Composite tasks for GPD study
	Slide 79: Composite tasks for GPD study
	Slide 80: Global GPD Global analysis efforts
	Slide 81: GPD global analysis
	Slide 82: GPD global analysis
	Slide 83: GPD global analysis
	Slide 84: GPD global analysis
	Slide 85: GPD global analysis
	Slide 86: GPD global analysis
	Slide 87: Parameterization of GPD
	Slide 88: Inputs for the global analysis
	Slide 89: Extracted GPDs 
	Slide 90: Extracted GPDs 
	Slide 91: Extracted GPDs 
	Slide 92: Partonic interpretations of GPDs
	Slide 93: Partonic interpretations of GPDs
	Slide 94: Partonic interpretations of GPDs
	Slide 95: Partonic interpretations of GPDs
	Slide 96: Partonic interpretations of GPDs
	Slide 97: Partonic interpretations of GPDs
	Slide 98: Partonic interpretations of GPDs
	Slide 99: Partonic interpretations of GPDs
	Slide 100: GPD in DA-like region
	Slide 101: GPD in DA-like region
	Slide 102: GPD in DA-like region
	Slide 103: GPD in DA-like region
	Slide 104: GPD in DA-like region
	Slide 105: GPD in DA-like region
	Slide 106: Physical implications
	Slide 107: Physical implications
	Slide 108: Physical implications
	Slide 109: Physical implications
	Slide 110: Physical implications
	Slide 111: Physical implications
	Slide 112: Physical implications
	Slide 113: J/psi photoproduction near the threshold
	Slide 114: J/psi photoproduction near the threshold
	Slide 115: J/psi photoproduction near the threshold
	Slide 116: GFFs extraction
	Slide 117: Summary and outlook
	Slide 118: Thank you!

