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Towards quantifying epistemic uncertainties in global PDF analyses

“Testing momentum dependence of the nonperturbative hadron structure in a global QCD analysis” [Phys.Rev.D 103]   

A.C. & Nadolsky 
  

“Parton distributions need representative sampling” [Phys.Rev.D 107]   

CTEQ-TEA collaboration  

“An analysis of parton distributions in a pion with Bézier parametrizations ” [upcoming] 

L. Kotz, A. Courtoy, P. Nadolsky, F. Olness, D.M. Ponce-Chávez 
DIS23 proceedings [2309.00152]

Mainly based on

ExperimentalTheoretical

Parametrization Methodology

https://arxiv.org/abs/2309.00152
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Fantômas4QCD 

Main idea: to quantify the rôle of parametrization form in global analyses. 

Fantômas4QCD: Our new c++ code, Fantômas, automates series of fits using multiple functional forms. 

Just like neural networks, these polynomial functional forms can approximate any arbitrary PDF shape. 

This code facilitates unbiased estimates of parametrization dependence.
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̂μμ

The law of large numbers disregards the quality of the sampling.                            

What uncertainties keep us from including the truth, ?μ

Xiao-Li Meng

 The Annals of Applied Statistics


Vol. 12 (2018), p. 685

Pavlos Msaouel (2022) 
Cancer Investigation, 40:7, 567-576

Sampling bias and big-data paradox
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Physics phenomenology and accuracy
f(xi, Qi)

Is our determination from global analysis encompassing the 
true parton distribution function at given ?(xi, Qi)
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Physics phenomenology and accuracy
f(xi, Qi)

Is our determination from global analysis encompassing the 
true parton distribution function at given ?(xi, Qi)

 μ − ̂μ = (data+sampling defect) × (measure discrepancy) × (inherent problem difficulty)

depends on the sampling algorithm

 statistical model, quality of data,…≡
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Physics phenomenology and accuracy
f(xi, Qi)

Is our determination from global analysis encompassing the 
true parton distribution function at given ?(xi, Qi)

 μ − ̂μ = (data+sampling defect) × (measure discrepancy) × (inherent problem difficulty)

depends on the sampling algorithm

 statistical model, quality of data,…≡

can tend to  for random sampling( n)
−1

To streamline the sampling over parametrization forms, we have designed metamorph.  
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The shape of parton distributions
Low-energy QCD dynamics, encapsulated in PDFs, are learned from experimental data.

2020-09-25 P. Nadolsky, Seminario Sandoval Vallarta 20

Shape in  extracted from data that are sensitive to specific PDF flavors, etc. 

I. hints of behavior of partons at low scales


II. predictions for other (new) processes

x



A. Courtoy__________________Fantômas4QCD: the pion PDF____________________QCD4EIC 23

The shape of parton distributions
Low-energy QCD dynamics, encapsulated in PDFs, are learned from experimental data.
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Shape in  extracted from data that are sensitive to specific PDF flavors, etc. 

I. hints of behavior of partons at low scales


II. predictions for other (new) processes

x

Classes of first principle constraints for -dependence 

positivity of cross sections

support in 

end-point: 


sum rules: 


⇨ asymptotics usually ensured by a carrier function

⇨ sum rules imposed through normalization

x

x ∈ [0,1]
f(x = 1) = 0

< x >n = ∫
1

0
dx xn−1 f(x)
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Rôle of parametrization in previous analyses

CT18 PDF (unpolarized proton PDF) 

Hessian-based methodology


Inclusive of sampling bias/lack of knowledge

Tolerance criterion leads to cyan band 

[Hou et al., Phys.Rev.D103]
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CT18 PDF (unpolarized proton PDF) 

Hessian-based methodology


Inclusive of sampling bias/lack of knowledge

Tolerance criterion leads to cyan band 

[Hou et al., Phys.Rev.D103]

Pavia transversity PDF

Hessian-based (with bootstrap) methodology


Variation on functional form (in early analyses).
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Figure 4. The up (left) and down (right) valence transversities coming from the present analysis
evolved to Q

2 = 2.4GeV2. From top row to bottom, results with the rigid, flexible, and extra-flexible
scenarios are shown, respectively. The dark thick solid lines are the So↵er bound. The uncertainty
band with solid boundaries is the best fit in the standard approach at 1�, whose central value is
given by the central thick solid line. The uncertainty band with dashed boundaries is the 68% of
all fitting replicas obtained in the Monte Carlo approach. As a comparison, the uncertainty band
with short-dashed boundaries is the transversity extraction from the Collins e↵ect [15].

of the Collins e↵ect, from which the other parametrization of ref. [15] is extracted. As a

matter of fact, this is the only source of significant discrepancy between the two extractions,

which otherwise show a high level of compatibility despite the fact that they are obtained

from very di↵erent procedures. Note that if the So↵er bound is saturated at some scale, it

is likely to be significantly violated at a lower scale [46]. Therefore, if we want to maintain

– 15 –

[Bacchetta, AC & Radici, JHEP03 (2013)] 
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Figure 3: Bernstein polynomials Bk,ni (g(x)) used in the functional form for the valence up
transversity (left) and the valence down transversity (right). The degree of the polynomials is,
respectively, n = {10, 20, 30, 40} in red with dot-dashed contours, purple/dashed, yellow/full
and green/dotted. See text for explanation.

need to insure a smooth fall-o↵ of the transversity in the limit x ! 1 that cannot be achieved
exclusively from the choice of functional form. In most cases, a second step will be required to
constrain the functional form in an allowed region. When the objective function is subject to
m constraints of the form Cj({p0}) = 0, the later are imposed through the Lagrangian

L({p0}, {�}) = �
2({p0}) +

mX

j

�jCj({p0}) , (16)

to which a stationary point of L is found minimizing with respect to the parameters {p0} and
the Lagrange parameters {�}.

Once the convergence of the first step guaranteed and given the linearity of our functional
form in terms of the parameter vectors, it is su�cient to define our new objective function as
follows

�
2
i

�
{pII}

�
=

h
pq I
i,k � pq II

i,k

i|
V

�1
h
pq I
i,k � pq II

i,k

i
. (17)

The vector of parameters pq I
i,k, of length nu,i + nd,i

, corresponds to {p}, the set of best fit
parameters obtained through the main minimization, and the covariance matrix V also comes
from step I. The chisquare function depends on the new set of best fit parameters, {pII}, which
consists in the set made of pq IIi,k .

In previous –unpolarized and longitudinally polarized– PDF determinations, the method
of the Lagrange multipliers has been made popular for error estimation [31]. In the present
approach, this method is used to impose limits on the fit parameters. In particular, we use
the more general inequality constraints through scipy.optimize.minimize in Python,which is
based on the Lagrange multipliers method above described [32]. We guide the large-x behavior
of the down parameterization only using the following Nc = 6 constraints

C
dV
i,j

�
p
d II
i,k

�
= h

qV
1,i

�
xj; p

d II
i,k

�
< ✏j for j = 1, · · · , Nc/2 ,

C
dV
i,j

�
p
d II
i,k

�
= h

qV
1,i

�
xj; p

d II
i,k

�
> �✏j for j = Nc/2 + 1, · · · , Nc , (18)

with xj = {0.3, 0.55, 0.75} and ✏j = {0.2, 0.5/3, 0.1}. In other words, we add 6 degrees of
freedom to our problem. The values for ✏j have been set considering the steepness of the
functional form, the trend of f1(x,Q2) and g1(x,Q2) through which is emulated the shift to
small values of x induced by DGLAP.

8

Mexico transversity PDF

Variation of Bernstein polynomials to span the  range.x

[Benel, AC & Ferro, EPJC 80 (2020)] 
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The shape of parton distributions
Low-energy QCD dynamics, encapsulated in PDFs, are learned from experimental data.

Uncertainty propagates from data and methodology to the PDF determination 

I. assessment of uncertainty magnitude is key 

II. advanced statistical problem 

III. evolving topic in the era of AI/ML

2020-09-25 P. Nadolsky, Seminario Sandoval Vallarta 21

Estimation of PDF 
uncertainties is a deep 
problem of multivariate 
statistics
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Estimation of PDF 
uncertainties is a deep 
problem of multivariate 
statistics

Epistemic vs. aleatory uncertainties

Statistical uncertainty 
propagated from experiments

— irreducible

Uncertainty due to lack of knowledge

—bias (may be reduced)
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Hypothesis testing and parton distributions

diagram by P. Nadolsky [DIS2023] 

Tests of PDFs

Representative sampling

Acceptable functions
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Epistemic uncertainties

How do we estimate the epistemic uncertainty of our analysis? Frontiers of the PDF analysis

2020-09-25 P. Nadolsky, Seminario Sandoval Vallarta 19

Theory
Precision 

PDFs, 
specialized 

PDFs

Statistics
Hessian, Monte-Carlo 

techniques, neural 
networks, reweighting, 

meta-PDFs…

Experi-
ment

New collider and 
fixed-target 

measurements

• Significant advances on all 
aspects of the proton PDF 
analysis are necessary to 
meet physics targets of the 
HL-LHC program

• Exceptional opportunities 
to learn about the 3-dim. 
structure of protons, 
nuclei, pions at new 
facilities envisioned in the 
HL-LHC era: EIC, LHeC, 
AMBER, LHCSpin…

• (N)NNLO QCD computations require 
equally accurate PDFs

The latter is due to methodological choices that 


can be estimated by sampling over analysis workflows, parametrization 
forms, analysis settings


are associated with the prior probability


While challenging in general, such estimation is facilitated by several 
representative sampling techniques.

Global analyses in both Hessian and MC/ML approaches 
estimate experimental, theoretical, and epistemic uncertainties
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Bézier curve
Bézier curves are convenient for interpolating discrete data

The interpolation through Bézier curves is unique if the polynomial degree= (# points-1), there’s a closed-form solution to the problem,

The Bézier curve can be expressed as a product of matrices:

•  is the vector of 
•  is the matrix of binomial coefficients

•  is the vector of  Bézier coefficient, , to be determined

T xl

M
C cl

8

III. TESTING LARGE-x PDFS IN EXPERIMENTAL MEASUREMENTS

A. Bézier curves as polynomial interpolations of discrete data

Models of the hadron structure make concrete predictions for the x dependence of the structure functions and
PDFs. One can straightforwardly check the agreement of a given model with an experimental observation within
the uncertainties. A stronger assertion, that the experiment demands the 1� x dependence of the PDFs to follow a
specific power law, is di�cult to demonstrate since the functional forms of the PDFs are not known exactly. This is
clearly not possible in the presence of local or resonant structures that disagree with the global trend. Even when the
PDF functional forms are restricted to be polynomial, the discrete experimental data can be compatible with multiple
functional forms.

To illustrate why, consider an idealized example, in which we seek a polynomial function f
(n)(x) of degree n to

interpolate k + 1 data points {x0, p0}, {x1, p1},..., {xk, pk} that have no uncertainty. Our points satisfy 0  xi  1.
From mathematics, we know that the existence and number of the interpolating solutions depend on the degree n of
the polynomial.

If n = k, the unisolvence theorem guarantees that there exists a unique interpolating polynomial going through
all points: f

(n)(xi) = pi. Two equivalent closed-form solutions for the interpolating polynomial are given by the
Lagrange polynomial,

L
(n)(x) ⌘

kX

i=0

pi

kY

m=1
m 6=i

x� xm

xi � xm
for n = k, (14)

and by a Bézier curve of degree n,

B
(n)(x) =

nX

l=0

cl Bn,l(x), (15)

constructed from Bernstein basis polynomials

Bn,l(x) ⌘

✓
l

n

◆
x
l(1� x)n�l

. (16)

Denote the vector B(n)(xi) as B. This vector can be written in a matrix form [50, 51],

B = T ·M · C, (17)

where C ⌘ kclk;

M ⌘ kmlpk with mlp =

8
><

>:
(�1)p�l

 
l

n

! 
n� p

n� l

!
, l  p

0, l > p

; (18)

and T ⌘ ktipk with tip = x
p
i . Here i runs from 0 to k, and l, p run from 0 to n.

Given the matrix P ⌘ kpik of data values, the matrix C for the Bézier curve B
(n)(x) going through all points

satisfies [51]

C = M
�1

· T
�1

· P for n = k. (19)

This equation shows that k+1 data points uniquely determine the polynomial of order n = k, assuming no experimental
errors.

If n < k, an interpolating solution that goes through all points may not exist. Rather, there is a Bézier curve that
minimizes the total squared distance to pi,

�
2(P,B) =

kX

i=0

⇣
B
(n)(xi)� pi

⌘2
= (P � T ·M · C)T · (P � T ·M · C). (20)

The matrix of the coe�cients of this Bézier curve is

C = M
�1

· (TT
T )�1

· T
T
· P for n < k. (21)
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and by a Bézier curve of degree n,

B
(n)(x) =

nX

l=0

cl Bn,l(x), (15)

constructed from Bernstein basis polynomials

Bn,l(x) ⌘

✓
l

n

◆
x
l(1� x)n�l

. (16)

Denote the vector B(n)(xi) as B. This vector can be written in a matrix form [50, 51],

B = T ·M · C, (17)

where C ⌘ kclk;

M ⌘ kmlpk with mlp =

8
><

>:
(�1)p�l

 
l

n

! 
n� p

n� l

!
, l  p

0, l > p

; (18)

and T ⌘ ktipk with tip = x
p
i . Here i runs from 0 to k, and l, p run from 0 to n.

Given the matrix P ⌘ kpik of data values, the matrix C for the Bézier curve B
(n)(x) going through all points

satisfies [51]

C = M
�1

· T
�1

· P for n = k. (19)

This equation shows that k+1 data points uniquely determine the polynomial of order n = k, assuming no experimental
errors.

If n < k, an interpolating solution that goes through all points may not exist. Rather, there is a Bézier curve that
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with the Bernstein pol. 
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Bézier curve

The orange/red points represent the control points, the number of which is 
related to the degree of the polynomial.

For simple functions, the interpolation is unique for any set of control points.

We can evaluate the Bézier curve at chosen control points, to get a vector of 

•  is now a matrix of  expressed at the control points.

Such that the coefficients can be expressed in terms of known matrices

ℬ → P

T xl

0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

x

u π
[x
]

f(x)=30 x2 (1-x)2

Bézier[6,x] to 6 points
Bézier[4,x] to 4 points
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Bézier-curve methodology for global analyses

Reconstruction of a more complex parametrization

The reconstructed function depends on the position and 
number of control points.

0.0 0.2 0.4 0.6 0.8 1.0
-0.5

0.0

0.5

1.0

1.5

2.0

x

u π
[x
]

f(x)=213. (1-x)2 x2 ×
(1-2.9 1 - x x +2.2 (1-x) x)

Global analyses can exploit this property to generate many functional forms.
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Bézier-curve methodology for global analyses — toy model
Fantômas4QCD program  

⇨   can modulate the PDFs in flexible ways at intermediate  using a set of free and fixed control points
ℬ x

We parametrize the Bézier coefficients as the shifts of the 
position of the control points:

Classical fit: determines the vector 

metamorph fit: determines the vector

5

Truth

Pseudodata

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

x

x1
.5
f π
(x
)

FIG. 1. Illustration of the metamorph routine. Upper plot:
set-up – a truth (solid ocher curve) can be extracted from a
distribution of pseudodata (blue points). Lower plot: starting
point – a given carrier function (thick blue curve) sets the
magnitude of the control points (blue crosses for “fixed” and
yellow arrows for “free”). See text.
[NOTE: FO] To think about: Fig.1+2 send a strong message,
but this is spread across 2 figures, so the impact is diminished.
Maybe (optional) combine Fig.1 a+b into a single figure, and then
display Fig.1 and Fig.2 in a single side-by-side figure. This would
really highlight the ability of the carrier function to adjust, allowing
flexibility of metamorph. Optional.

points, such that

Pi = B(xi) ! P 0
i = B(xi) + �B(xi)

! P 0 = (B0(x1) + �D,B0(x2) + �E, · · · ) ,
(13)

with i running from 1 to the length of the vector P for

FIG. 2. Illustration of the Fantômas routine. After minimiza-
tion, the carrier function (short-dashed red curve) has varied
and the position of all control points has been shifted, helped
by the modulator, i.e., the Bézier curve. The “fixed” CPs
(blue crosses) lay on the updated carrier function. The final
result is the long-dashed cyan curves, labeled “Metamorph.”
This example is given for Nm = 4, ↵x = 0.45.

examples with square T matrices (see [30, 31] for the360

rectangular matrix case). In this paper, we will consider
examples with square matrices, only.
The Mathematica notebook based on the Bézier for-

malism was extended to allow for minimization. In
Figs. 1 & 2, we illustrate the Fantômas methodology365

for a devised example obtained with the metamorph
module in Mathematica. The upper plot of Fig 1 shows
a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
points xi is initialized, as illustrated at the lower plot375

of Fig. 1.
The method’s flexibility is reflected through the

freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
of Nm + 1 control points and the stretching parameter380

↵x. Additionally, two modalities for the variation of the
control points are implemented.

Using the Fantômas method to fit the pseudodata
described above (Fig. 1) with the specific settings (Nm =385

4,↵x = 0.45) and Nm + 1 = 5 control points positioned
at small- and large-x values, we obtain a metamorph
curve (long-dashed cyan curve in Fig. 1), that is the
product of the updated carrier function (short-dashed red

x q(x,Q2
0) = A0

q x
Bq (1� x)Cq ⇥

⇣
1 + B(Nm)(x↵x , Q2

0; v)
⌘

<latexit sha1_base64="/6rCdF+4u5MpuJS8jPucjvQ5FPw="></latexit>

with  v = {C,P}
<latexit sha1_base64="AEeJJ1152Lhhq16M6gn6pxPBMV0=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VwISWpgm6EYjcuK9gHNKFMJpN26GQSZiaFEvIXbvwVNy4Ucas7/8ZJm0VtvTBw7jn3cOceL2ZUKsv6MUpr6xubW+Xtys7u3v6BeXjUkVEiMGnjiEWi5yFJGOWkrahipBcLgkKPka43buZ6d0KEpBF/VNOYuCEachpQjJSmBmbNSbhPRG5PJ9mtky70zexioWtlTgYHZtWqWbOCq8AuQBUU1RqY344f4SQkXGGGpOzbVqzcFAlFMSNZxUkkiREeoyHpa8hRSKSbzu7K4JlmfBhEQj+u4IxddKQolHIaenoyRGokl7Wc/E/rJyq4cVPK40QRjueLgoRBFcE8JOhTQbBiUw0QFlT/FeIREggrHWVFh2Avn7wKOvWafVmrP1xVG3dFHGVwAk7BObDBNWiAe9ACbYDBE3gBb+DdeDZejQ/jcz5aMgrPMfhTxtcv/g2hCw==</latexit>
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distribution of pseudodata (blue points). Lower plot: starting
point – a given carrier function (thick blue curve) sets the
magnitude of the control points (blue crosses for “fixed” and
yellow arrows for “free”). See text.
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but this is spread across 2 figures, so the impact is diminished.
Maybe (optional) combine Fig.1 a+b into a single figure, and then
display Fig.1 and Fig.2 in a single side-by-side figure. This would
really highlight the ability of the carrier function to adjust, allowing
flexibility of metamorph. Optional.
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The Mathematica notebook based on the Bézier for-

malism was extended to allow for minimization. In
Figs. 1 & 2, we illustrate the Fantômas methodology365

for a devised example obtained with the metamorph
module in Mathematica. The upper plot of Fig 1 shows
a “truth” distribution (solid ocher curve), that in this
specific example is known, and pseudo-data randomly
generated from that truth distribution. The goal will370

be to fit the data with the metamorph methodology and
compare with the (known) truth. To fit the data, the
metamorph set-up requires a first estimate of the carrier
function to which the magnitude f(xi) of the control
points xi is initialized, as illustrated at the lower plot375

of Fig. 1.
The method’s flexibility is reflected through the

freedom to choose, in agreement with the size of the
data [1], the degree of polynomial Nm, the x-position
of Nm + 1 control points and the stretching parameter380

↵x. Additionally, two modalities for the variation of the
control points are implemented.

Using the Fantômas method to fit the pseudodata
described above (Fig. 1) with the specific settings (Nm =385

4,↵x = 0.45) and Nm + 1 = 5 control points positioned
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(blue crosses) lay on the updated carrier function. The final
result is the long-dashed cyan curves, labeled “Metamorph.”
This example is given for Nm = 4, ↵x = 0.45.

examples with square T matrices (see [30, 31] for the360

rectangular matrix case). In this paper, we will consider
examples with square matrices, only.
The Mathematica notebook based on the Bézier for-
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curve) and a Bézier curve of degree Nm obtained through390

Eq. (12) with the control points as in Eq. (13), minimiz-
ing an objective function by pulling the control points.
The latter can enhance the potential of the Fantômas

method further by distinguishing two categories: CPs
that are fixed to stay on the carrier function (blue crosses395

in Fig. 1) and CPs that are free to depart from the
updated carrier (yellow arrows).
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FIG. 3. The Fantômas technique illustrated by applying the
bootstrap (or importance) sampling on the data (upper plot)
or the Fântomas methodology, that consists in sampling over
representative choices for the CPs and the scaling factor ↵x

(lower plot). The resulting uncertainties are displayed in cyan
(bootstrap) and green (parameter-space sampling).

The ultimate purpose for designing the metamorph
methodology concerns the quantification of uncertainty.
Once a central fit has been determined, say, the long-400

dashed cyan curve of Fig. 1, its full statistical meaning

is obtained through the propagation of the two classes
of uncertainties, namely the aleatory and epistemic un-
certainties REF. The aleatory class consists of statistical
uncertainties that propagate the experimental errors. In405

Fig. 3, we illustrate them using the bootstrap method,
one of the possible error propagation technique. Also
called resampling or importance sampling, it consists in
generating N replicas of the data set according to a
probability distribution. Each set of fluctuated data is410

fitted through metamorph (light cyan curves in the upper
plot of Fig. 3); their (unweighted) average is illustrated
here in green. The curves obtained after bootstrapping
all correspond to the same metamorph settings (here
(Nm = 4,↵x = 0.45), unvaried CPs). To account for the415

epistemic uncertainties, it is necessary to sample over
the space of solutions, which in the case of Fantômas

means sampling over the settings to investigate a broad
representation of polynomials [8]. [NOTE: FO] OK?

The control points are a crucial aspect of metamorph:420

their position xi can leverage the space of solutions by
spanning more possible functional forms. Still, their
distribution should be chosen strategically to avoid
ill-conditioned problems, i.e. the Runge phenomenon,
arising from equidistant spacing of control points and425

high polynomial degrees, which may not be suitable to
improve accuracy on the fits. To measure and assess
how the input in matrix T impacts the sensitivity of
the output coe�cient vector C, the condition number is
computed along with the fits, following the Frobenius430

matrix norm. Users should seek to minimize this metric
by setting up a well behaved T matrix. This is achieved
by taking advantage of the metamorph parameters, e.g.
power stretching (↵x). [NOTE: FO] OK??? (↵x).

435

The Fantômas environment has been properly imple-
mented on the xFitter fitting package [32]2. The xFitter

framework incorporates various standard parameteriza-
tions in their library. Just like the other parameteriza-
tions included in xFitter, the metamorph functions can be440

used for any flavor of choice by including the metamorph
parameterization in pdfparams.
The metamorph parameterization requires several pa-

rameters to be used. Unlike other parameterization, the
parameters passed into xFitter are the shifts from the445

initial value. The initial values are defined within a card
file labeled as steering fantomas.txt.
Several options have been integrated into the Fantômas

module inside of xFitter. These options are designed to
allow the user to control the flexibility of the metamorphs450

used. One of the options is to allow the carrier function,
Eq. (5), to be fixed (�Bq = �Cq = 0) or to vary during the
minimization process. This ensures the overall function
will fluctuate around the carrier function. An initial
guess for the carrier parameters need to be provided.455

2 https://www.xfitter.org/xFitter/
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(bootstrap) and green (parameter-space sampling).
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means sampling over the settings to investigate a broad
representation of polynomials [8]. [NOTE: FO] OK?

The control points are a crucial aspect of metamorph:420

their position xi can leverage the space of solutions by
spanning more possible functional forms. Still, their
distribution should be chosen strategically to avoid
ill-conditioned problems, i.e. the Runge phenomenon,
arising from equidistant spacing of control points and425

high polynomial degrees, which may not be suitable to
improve accuracy on the fits. To measure and assess
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by setting up a well behaved T matrix. This is achieved
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The Fantômas environment has been properly imple-
mented on the xFitter fitting package [32]2. The xFitter

framework incorporates various standard parameteriza-
tions in their library. Just like the other parameteriza-
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parameters passed into xFitter are the shifts from the445

initial value. The initial values are defined within a card
file labeled as steering fantomas.txt.
Several options have been integrated into the Fantômas

module inside of xFitter. These options are designed to
allow the user to control the flexibility of the metamorphs450

used. One of the options is to allow the carrier function,
Eq. (5), to be fixed (�Bq = �Cq = 0) or to vary during the
minimization process. This ensures the overall function
will fluctuate around the carrier function. An initial
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if bootstrapped

if sampled over functional forms

sampling on the distribution 
of data uncertainties

sampling over parametrizations

Both samplings can be done in the same analysis, they are not mutually exclusive.

Bézier-curve methodology for global analyses — toy model
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metamorph routine in 

1 Introduction

This manual provides a short description of the xFitter program which can be used to determine un-
polarised proton parton distribution functions (PDFs). The parton distribution functions are needed to
calculate cross sections for ep, pp, and pp colliders and thus they are required for interpretation of the
data collected at the LHC and future colliders.

A schematic structure of the xFitter is illustrated in Fig. 1 which encapsulates all the current
functionality of the platform.

Initialisation

Data
– Collider, Fixed Target:

ep, µ p
– Collider: pp, pp̄

Theory
– PDF Parametrisation
– QCD Evolution:

DGLAP (QCDNUM),
non-DGLAP (CCFM, dipole)

– Cross Section Calculation

QCD Analysis
– Treatment of the Uncertainties
– Fast c2 Computation
– Minimisation (MINUIT)

Results
– PDFs, LHAPDF, TMDlib Grids
– as, mC , . . .
– Data vs. Predictions
– c2, Pulls, Shifts

Figure 1: Schematic structure of the xFitter program.

This manual is structured such that it first describes briefly the theoretical input (section 2), followed
by a description of the PDF parameterisation (section 3.1) and various �2 functions used in the minimisa-
tion (section 3.2). The minimisation is based on the standard MINUIT program [1] which is not discussed
here. Section 5 is dedicated to program installation instructions for di↵erent fit scenarios (section 5.1)
and provides a description of the program steering cards, with the output options given in section 5.2.

2 Theoretical Input

The main features of QCD theory are confinement (at short ranges the quarks are strongly bound inside
protons) and asymptotic freedom (at large scales the coupling constant of the strong force decreases and
quarks become quasi-free partons). The factorisation theorem exploits these features by separating short
and long distances processes, such that structure functions can be written as a convolution between calcu-
lable parts (hard scattering coe�cients) and non-calculable parts (parton distribution functions (PDFs)),
which are therefore parametrised and determined from data.

4

xFitter
PDF Fitting package

xFitter developers

March 17, 2017

Abstract

The determination of the proton patron distribution functions is a complex endeavor involving
several physics processes. The main process is deep-inelastic scattering and the central data set
covering most of the proton structure phase space is provided at the HERA ep collider. Further
processes (fixed target DIS, ppbar collisions etc.) provide further constraints for particular aspects:
flavor separation, very high Bjorken-x etc. In particular, the precise measurements obtained or to
come from LHC will continue to improve the knowledge of the PDF. The xFitter project aim at
providing a framework for QCD analyses related to proton structure in the context of multi-processes
and multi-experiments. The framework includes modules or interfaces enabling a large number of
theoretical and methodological options, as well as a large number of relevant data sets from HERA,
Tevatron and LHC. This manual explains the theoretical input used in the QCD analysis, the fit
methodology and the installation procedure of the program. More information and the package
downloads can be found on the web site http://xfitter.org.

metamorph requires inputs from the user:


•  — degree of polynomial


•  of control points


• fixed or free control points

• stretching parameter

Nm

{x, fin(x)}
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Why study the pion?
➡ xFitter’s framework set up the pion PDF analysis— https://www.xfitter.org/xFitter/
➡ less data wrt proton, still at NLO accuracy 
➡ recent “come back” thanks to increased fitting activity in the nuclear community —theory and experiment-wise

⇨ Pion PDFs are closely related to the dynamics of QCD in non-perturbative regime— trickier interpretation due to 
its pseudo-Goldstone nature and ansatze for exclusive-to-inclusive relations.

https://www.xfitter.org/xFitter/
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as shown, the exponent is “2”, reproducing Eq. (2). This
feature removes the need to use moments of arbitrarily high
order, enabling one to focus instead on the lower-order
moments which provide information on the mid-x shape.
One remark may be valuable here. This application of the

SPM requires the coefficient of the highest active denom-
inator power in Eq. (31) to be unity. Hence, when one
uses Eq. (31) for m ¼ 0, 1, 2, 3 moments, b2 ¼ 1 and
a2 ¼ 0 ¼ b3. Referring to the lower panels of Table I, this
presents an appearance of sensitivity in the coefficients to
the number of moments employed; but that is misleading.
The relevant measure is not these coefficients, but the
similarity between the curves obtained via reconstruction.
Our result, Eq. (32), is depicted in Fig. 5. The mean
absolute relative error between its first eleven moments and
those of the separate reconstructed distributions is 4(3)%.
Given the remarks in Sec. I, it is worth reiterating that

Eq. (32) exhibits the x ≃ 1 behavior predicted by the QCD
parton model, Eq. (2); and because it is a purely valence
distribution, this same behavior is also evident on x ≃ 0.
However, in contrast to the scale-free valence-quark dis-
tribution computed in Ref. [37]:

qsfðxÞ ≈ 30x2ð1 − xÞ2; ð33Þ

obtained using parton-model-like algebraic representations
of S, Γπ, the distribution computed with realistic inputs
is a much broader function. A similar effect is observed in
the pion’s leading-twist valence-quark distribution ampli-
tude [114] and those of other mesons [108,
115–118]. The cause is the same, viz. the valence-quark
distribution function is hardened owing to DCSB, which is
a realization of the mechanism responsible for the emer-
gence of mass in the Standard Model [119]. Emergent mass
is expressed in the momentum-dependence of all QCD
Schwinger functions. It is therefore manifest in the point-
wise behavior of wave functions, elastic and transition
form factors, etc.; and as we have now displayed, also in
parton distributions. (This was to be expected, given the
connection between light-front wave functions and parton
distributions.)

V. EVOLUTION OF PION DISTRIBUTION
FUNCTIONS

The pion valence-quark distribution in Eq. (32) is
computed at ζH ¼ mα, Eq. (24). On the other hand, existing
lQCD calculations of low-order moments [33–36] and
phenomenological fits to pion parton distributions are
typically quoted at ζ ≈ ζ2 ¼ 2 GeV [120–122]; and the
scale relevant to the E615 data is ζ5 ¼ 5.2 GeV [9,13].
We therefore employ the effective charge in Eq. (23) to
integrate the one-loop DGLAP equations, therewith evolv-
ing qπðx; ζH ¼ mαÞ to obtain results for qπðx; ζ2Þ and
qπðx; ζ5Þ. This procedure ensures that saturation of the
effective charge is expressed, e.g., αPIðζHÞ=ð2πÞ ¼ 0.20,
½αPIðζHÞ=ð2πÞ%2 ¼ 0.04, stabilizing our evolved results on
ζ > ζH. Notably, given that ζH ¼ mα is fixed by our
analysis, all results are predictions. We checked that with
fixed ζH, varying mα → ð1& 0.1Þmα does not measurably
affect the evolved distributions. We therefore report results
with mα fixed and an uncertainty determined by vary-
ing ζH → ð1& 0.1ÞζH.

A. ζH → ζ2
Our prediction for qπðx; ζ2Þ is depicted in Fig. 6. The

solid curve and surrounding bands are described by the
following function, a generalization of Eq. (32):

qπðxÞ ¼ nqπxαð1 − xÞβ

× ½1þ ρxα=4ð1 − xÞβ=4 þ γxα=2ð1 − xÞβ=2%; ð34Þ

where nqπ ensures Eq. (9) and the powers and coefficients
are listed in Table II. Evidently, the large-x exponent is

βðζ2Þ ¼ 2.38ð9Þ: ð35Þ

FIG. 5. Solid (black) curve: pion valence-quark distribution
function at the hadronic scale, ζH , Eq. (32). Dashed (blue) curve:
scale-free distribution, Eq. (33).

FIG. 6. Pion valence-quark momentum distribution function,
xpπðx; ζÞ, p ¼ q, evolved ζH → ζ2 ¼ 2 GeV—solid (blue) curve
embedded in shaded band; and long-dashed (black) curve—ζ2
result from Ref. [12]. Equations (39), (40): gluon momentum
distribution in pion, xgπðx; ζ2Þ—dashed (green) curve within
shaded band; and sea-quark momentum distribution,
xSπðx; ζ2Þ—dot-dashed (red) curve within shaded band. In all
cases, the shaded band indicates the effect of ζH → ζHð1& 0.1Þ.
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FIG. 4. Valence quark (left), sea quark (middle), and gluon (right) distributions with the 1�

relative uncertainties (underneath each panel) for the NLO (top) and NLO+NLLDY (bottom)

methods. All three scenarios are displayed: Extractions from experimental data alone (Scenario A,

blue curves), from experimental and lattice data without systematic corrections (Scenario B, green

curves), and from including both experimental and lattice data with systematic corrections (Sce-

nario C, red curves). A random subset of 300 of the ⇠ 700 total Monte Carlo replicas is shown.

For the case of the NLO+NLLDY extractions, none of the scenarios are found to match

well with each other, suggesting some instability of the PDFs with the inclusion of the lattice

data. The experimental data prefer a valence quark distribution with a slightly smaller

magnitude at intermediate x. When the lattice data are included, the PDF increases by

⇠ 30% in the range 0.2 . x . 0.7. When including the systematic corrections, on the other

hand, the PDF shifts downwards, but still mostly does not overlap with the experimental-

only results. The large-x sea quark and gluon distributions are supressed with the inclusion

of the lattice data because of indirect constraints from the momentum sum rule. Despite

the di↵erences of the PDFs among the scenarios, the description of the experimental data

remains unchanged, as indicated in Table II.
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Pioneer pion-induced Drell-Yan analyses (GRV, SMRS….) replaced by modern analyses

by xFitter [from which I took the plot]
complemented by [model-dependent] leading-neutron data [JAM]

include large-  resummation
➡ ASV [Aicher etal., PRL105]

➡ JAM21 [Barry et al., PRL127]

x

State-of-the-art of pion PDF in global analyses

V. STATISTICAL TREATMENT AND
ESTIMATION OF UNCERTAINTIES

The PDF parameters are found by minimizing the χ2

function defined as

χ2 ¼
X

i

ðdi − t̃iÞ2

ðδsysti Þ2 þ
! ffiffiffi

t̃i
di

q
δstati

#
2
þ
X

α

b2α; ð3Þ

where i is the index of the datapoint and α is the index of
the source of correlated error. The measured cross section is
denoted by di, with δsysti and δstati being respectively the
corresponding systematic and statistical uncertainties. The
ti’s represent the calculated theory predictions, and t̃i ¼
tið1 −

P
α γiαbαÞ are theory predictions corrected for the

correlated shifts. γiα is the relative coefficient of the
influence of the correlated error source α on the data point
i, and bα is the nuisance parameter for the correlated error
source α.
The error rescaling δ̃stat ¼

ffiffiffi
t̃i
di

q
δstat is used to correct for

Poisson fluctuations of the data. Since statistical uncer-
tainties are typically estimated as a square root of the
number of events, a random statistical fluctuation down in

the number of observed events leads to a smaller estimated
uncertainty, which gives such points a disproportionately
large weight in the fit. The error rescaling corrects for this
effect. This correction was only used for the Drell-Yan data.
The nuisance parameters bα are used to account for

correlated uncertainties. In this analysis the correlated
uncertainties consist of the overall normalization uncer-
tainties of the datasets, the correlated shifts in predictions
related to uncertainties from nuclear PDFs, and the strong
coupling constant αSðM2

ZÞ ¼ 0.118% 0.001. The nuisance
parameters are included in the minimization along with the
PDF parameters. They determine shifts of the theory
predictions and contribute to the χ2 via the penalty termP

α b
2
α. For overall data normalization, the coefficients γiα

are relative uncertainties as reported by the corresponding
experiments, and, in the case of the WA70 data, the above-
mentioned additional 32% theoretical uncertainty, (listed in
Table II). For the uncertainties from nuclear PDFs and αS,
the coefficients γiα are estimated as derivatives of the theory
predictions with respect to αS and the uncertainty eigen-
vectors of the nuclear PDFs as provided by the nCTEQ15
set. This linear approximation is valid only when the
minimization parameters are close to their optimal values.
It was verified that this condition was satisfied for the
performed fits.
The uncertainty of the perturbative calculation is estimated

by varying the renormalization scale μR and factorization
scaleμF by a factor of two up and down, separately forμR and
μF. The scales were varied using APPLgrid, and the variations
were coherent for all data bins. Renormalization scale
variation for DGLAP evolution was not performed. We
observe a significant dependence of the predicted cross
sections on μR and μF: the change in predictions is ∼10%,
which is comparable to the normalization uncertainty of the
data. This dependence indicates that next-to-next-to-leading
order corrections may be significant.
In order to estimate the uncertainty related to the

flexibility of chosen parametrization, the fit is repeated

TABLE II. The normalization and partial χ2 for the considered
datasets. The normalization uncertainty is presented as estimated
by corresponding experiments. In order to agree with theory
predictions, the measurements must be multiplied by the nor-
malization factor. Deviations from 1 in the normalization factor
lead to a penalty in χ2, as described in Sec. V.

Experiment
Normalization
uncertainty

Normalization
factor χ2=Npoints

E615 15% 1.160% 0.020 206=140
NA10 (194 GeV) 6.4% 0.997% 0.014 107=67
NA10 (286 GeV) 6.4% 0.927% 0.013 95=73
WA70 32% 0.737% 0.012 64=99

FIG. 3. Comparison between the pion PDFs obtained in this work, a recent determination by the JAM collaboration [31], and the
GRVPI1 pion PDF set [27].
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Data for pion PDF
We use the xFitter framework, in which metamorph was implemented as an independent parametrization. 


We also extend the xFitter data:

 


pion-induced Drell-Yan                    → constraints valence PDF at large 

prompt photons                               → may constrain gluon PDF at largish 

leading neutron (Sullivan process)   → only constraints on sea and gluon at   [Fantômas uses the H1 prescription]

x
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Drell-Yan only analysis

Previous analyses used a fairly basic parametrization




With a rigid parametrization, in Drell-Yan only analysis, the sea and gluon pion 
distributions are not well determined.


We can achieve equally good or better fits by varying the small-  behaviour  of 
the sea PDF [ ] within xFitter uncertainty.


xfq/π(x, Q0) = Nxα(1 − x)β × (1 + γ x + ⋯)

x
BS
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With a rigid parametrization, in Drell-Yan only analysis, the sea and gluon pion 
distributions are not well determined.


We can achieve equally good or better fits by varying the small-  behaviour  of 
the sea PDF [ ] within xFitter uncertainty.


xfq/π(x, Q0) = Nxα(1 − x)β × (1 + γ x + ⋯)

x
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Need for complementary processes— universality and flavor separation 

⇨ JAM (and HERA before them) proposed to use leading-neutron data


⇨ future experiments at EIC and JLab22(?)
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The Fantômas pion PDFs [Kotz, Ponce-Chávez, AC, Nadolsky & Olness] 
Proceedings in 2309.00152.
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FIG. 11. The FantoPDF sets at 2 GeV, shown for a ⇡+ flavor
configuration.

improve the contrast between sea and gluon distributions
observed in the pre-Fantômas analysis of the DY-only870

data [Fig. 5]. The addition of new data is not by itself
su�cient to narrow the interval for the allowed sea and
the gluon fractions of momentum; a wide correlation
ellipse supports this statement [Fig. 10]. This observation
is somewhat in contradiction with the JAM analyses [2]875

– see Sec. VII.

FIG. 12. Final Fantômas ensemble compared to JAM21 and
xFitter results, at Q = Q0, shown for the valence PDF.
For the FantoPDF set, the 68% CL of the MC output is
shown. xFitter’s results are plotted without accounting for
the uncertainty coming from the scale variation. The inner
frame shows the ratio to the central value of each set –
symmetric uncertainties are used for all three sets.

While marginally negative fits are allowed, the final
results lead to positive momentum fractions of all
components at Q0. The results for the momentum
fractions at Q0 are summarized in Table II (upper row).880

And the valence momentum fraction is given at Q = 2

FIG. 13. Same as Fig. 12. Top: sea distribution, bottom:
gluon distribution.

GeV in Table III (upper row).

One motivation to study the pion PDF from the
phenomenological point of view comes from its valence885

sector. Recent debates on the observability of non-
perturbative manifestations in high-energy data made
the large-x behavior of the the pion PDF a cheval de
bataille [54–56]. The quark-counting rules predict a
(1 � x)�=2 fall-o↵ when x ! 1. This expectation does890

not account for the many sources of hadronic corrections
at either low- or large-momentum fractions which will
a↵ect the interpretability in terms of quasi-free partons,
and hence this early-QCD prediction [22]. The present
analysis does not quantitatively di↵er from previous895

recent phenomenological PDFs: the fall-o↵ of the valence
PDF at large x is compatible with � = Ceff

v = 1 at
Q0 =

p
1.9 GeV (see Fig. 14), in spite of the multiple

functional forms that have been considered (Fig. 16).

PRELIMINARY

First physics use of the Fantômas framework: 


⇨ We generated  fits corresponding to  sets for .


⇨ Well-behaved (convergence + soft constraints) fits are kept.


⇨ Fits within  are kept.


⇨ The final bundle is generated from the 4 most diverse shapes at .


⇨ Bundled uncertainty with mcgen [Gao & Nadolsky, JHEP07]


N ∼ 75 N {Nm, P, αx}

χ2 + δχ2 = χ2 + 2(Npts − Npar)

Q0
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Fantômas parametrizations for the pion PDF 11
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FIG. 8. Central values for pion PDFs obtained with the
Fantômas environment for various Nm, ↵x and CP settings,
shown at Q0 =

p
1.9 GeV. The chi-square values are given

in the legend. The sets that will be chosen for the final
combination (4) are highlighted as thick and opaque curves.

the proton PDF [7] variations of parametrization forms
must be encompassed within the uncertainty.730

The metamorph parametrization, with its range of
configurations from the Fantômas code, creates a span
of the parameter space, whose solutions we integrate to
obtain the pull of possible outputs. Notable, negative
gluons [light purple short-dashed curve in Fig. 8] are not735

unfavored by the data. Such solutions have also been
found by the JAM collaboration [4]. However, we choose
to discard predominantly negative PDFs. The kinemat-
ical space around (x ' 0.1, Q & Q0) belongs to the
extrapolation region, and must be further constrained by740

new data. Meanwhile the present analysis demonstrates
how diverse solutions enhance the uncertainty for the
gluon and sea sector in that unconstrained region.

Highlighted with bold colors and fonts on Fig. 8 are
the four fits that will constitute the final FantoPDF745

ensemble. They are chosen for their distinct shapes,
thereby maximally spanning the parameter space
explored across the > 50 metamorph configurations.

Among these selected outcomes, the lowest found chi-
square [440.4] corresponds to a metamorph configuration750

yielding a slightly negative gluon distribution [indicated
by the solid cyan curve with three dots] in the x ' 0.1
extrapolation region.

The lowest chi square values are obtained for PDF755

sets with a gluon that becomes negative either around
x ' 0.1 or very large x, at Q0 =

p
1.9 GeV. This feature

obviously disappears when a slightly higher Q0 value is
chosen, at the expense of a higher �2 – we have checked
that it is the case for the sets that display a negative760

gluon at x ! 1. The positivity of distribution functions,
as a first-principle argument, has been the topic of
various research publications in the past years [45–47].
Ensuing observables must be positive everywhere in x
and the range of Q2 for which perturbative QCD is at765

play. To the perturbative behavior, various contributions
should be added, due to either hadronic activity at
higher scales, large-x resummation or a variety of other
non-perturbative corrections [see general discussion in
Ref. [22] and Ref. [5, 48] for threshold resummation].770

Such contributions may hinder a proper perturbative
treatment in specific kinematic regions, especially at
low-Q2 values. For the pion distributions, the rôle
played by Q0 has been pointed out since the early model
evaluations, with a particular highlight [19, 20] following775

the BaBar � ! ⇡ electromagnetic transition form factor
data, in the exclusive sector.

We have also tested case figures for which the gluon
is intentionally close to zero at Q0, for a Nm = 0
configuration, and hence purely DGLAP-generated at780

large scales. This structure is akin to the evaluations of
PDFs in non-perturbative models or alike. The trend
of the �2 dependence on Q0 hints towards a slight
preference for a larger gluon contribution [namely, a
smaller Q0] at small-x, though it is not significant enough785

to disentangle this perturbative-only behavior from the
dependence on the functional form for the sea and the
valence sectors. Variations of Q0 associated with a
purely perturbatively-generated gluon distribution lead
to discrepancies with JAM and xFitter results at small-790

x values for the gluon and the sea, where the data are
scarce, and increase the error band for the valence PDF
at mid-x ranges.

The dependence on Q0 is particularly relevant when
results from global analyses are used to infer the RGE-795

equivalent scale of nonperturbative models, e.g. [49].
The structure of the pion has been extensively studied
in field-theoretical approaches based on first principles,
outplaying nonperturbative models of the proton struc-
ture in that aspect. The dynamical breaking of chiral800

symmetry, which is reflected by the absence of a left-right
symmetry in the particle spectrum, must be incorporated
to properly generate the pion triplet. The degrees of
freedom of low-energy dynamics contrast with those of
perturbative QCD; this statement has led to consider805

extensions of the evolution equations, e.g., [50], or to
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FIG. 16. Left: same as Fig. 7 for the valence PDF. Right: same as 8 for the valence PDF.

to solve. To embed the Bézier-curve formalism in a
framework that addresses inverse problems, the usual
static parametrization is replaced by a set of control
points, which, in turn, are used to generate the cor-1105

responding Bézier curve. The minimization of the ob-
jective function that is characteristic of inverse-problem
solutions hence varies the function at the control points
only, rather than determining the polynomial coe�cients.
This novel metamorph parametrization module has been1110

implemented into the xFitter QCD fit framework. To
some extent, the generation of polynomial forms could
supplant the use of neural networks in some case. READ
REF ABOUT POLYNOMIAL CHAOS EXPANSION.

The new tool presented in this manuscript supports the1115

evaluation of the uncertainty due to the parametrization
in global analyses. It is applied to the pion analysis
to NLO, as already implement in the xFitter frame-
work [3]. The latter uses the Hessian methodology, a
powerful statistical framework to which we have now1120

added a first step toward systematized functional forms.
The Fantômas pion fit constitutes a state-of-the-art
global analysis of the pion PDF, that complements the
panorama o↵ered by the three JAM fits (collinear [2] with
the inclusion of large-x resummation [5] and simultaneous1125

collinear and TMD fit [4]) and the xFitter analysis [3].
Both groups iterated and improved on the pioneering
QCD analyses of the pion PDFs [6]. Further approaches
to analyze the pion PDF in specific models have been
proposed, such as the statistical model [72] (and ref-1130

erences therein) or the light-front front wave functions
formalism [73].

A reliable uncertainty for the pion PDF ensemble is
achieved by varying the set of control points in size,
increasing the degree Nm of the polynomial, and in the1135

x axis, focusing on specific intervals in x 2 [0, 1].
The observation that the BS parameter, dictating the

behavior of the sea at small x, is loosely constrained
is reflected through the kinematic span of DY data.
Pion-induced DY on nuclear target is characterized1140

by large momentum fractions for the pion beam, and
small- to mid-x values for the targeted proton. The
values for the invariant mass of the lepton pair allows
for perturbative QCD to be used. [...]
IN PROGRESS1145
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The Fantômas team acknowledges the communication
with I. Novikov on the uncertainties of the momentum
fractions in the original xFitter paper. We are thankful1150

for useful discussions as well as logistical help with T.
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Appendix A: Valence pion distribution – plots1160

We also report most plots of the valence pion PDF as the variation obtained with the metamorph parametrization
and the Fantômas environment did not substantially change w.r.t. the nominal results. Only final such valence plots
are given in the main text.

Fantômas analysis uses varying sets of 

• degree of polynomial (0,1,2), 

• position of fixed/free control points,

• stretching parameter of the argument


Extrapolation region for pion PDF is around  at .


Negative gluon are found to be possible at such a low scale [confirming JAM’s findings].
x = 0.1 Q0

Bold curves correspond to our selection for the final Fantômas set.


Representative curves within   range:  


                                                                                                  for 408 points and 7-13 parameters.

χ2 χ2 + δχ2 = χ2 + 2(Npts − Npar) ≃ 440 + 30
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improve the contrast between sea and gluon distributions
observed in the pre-Fantômas analysis of the DY-only870

data [Fig. 5]. The addition of new data is not by itself
su�cient to narrow the interval for the allowed sea and
the gluon fractions of momentum; a wide correlation
ellipse supports this statement [Fig. 10]. This observation
is somewhat in contradiction with the JAM analyses [2]875

– see Sec. VII.

FIG. 12. Final Fantômas ensemble compared to JAM21 and
xFitter results, at Q = Q0, shown for the valence PDF.
For the FantoPDF set, the 68% CL of the MC output is
shown. xFitter’s results are plotted without accounting for
the uncertainty coming from the scale variation. The inner
frame shows the ratio to the central value of each set –
symmetric uncertainties are used for all three sets.

While marginally negative fits are allowed, the final
results lead to positive momentum fractions of all
components at Q0. The results for the momentum
fractions at Q0 are summarized in Table II (upper row).880

And the valence momentum fraction is given at Q = 2

FIG. 13. Same as Fig. 12. Top: sea distribution, bottom:
gluon distribution.

GeV in Table III (upper row).

One motivation to study the pion PDF from the
phenomenological point of view comes from its valence885

sector. Recent debates on the observability of non-
perturbative manifestations in high-energy data made
the large-x behavior of the the pion PDF a cheval de
bataille [54–56]. The quark-counting rules predict a
(1 � x)�=2 fall-o↵ when x ! 1. This expectation does890

not account for the many sources of hadronic corrections
at either low- or large-momentum fractions which will
a↵ect the interpretability in terms of quasi-free partons,
and hence this early-QCD prediction [22]. The present
analysis does not quantitatively di↵er from previous895

recent phenomenological PDFs: the fall-o↵ of the valence
PDF at large x is compatible with � = Ceff

v = 1 at
Q0 =

p
1.9 GeV (see Fig. 14), in spite of the multiple

functional forms that have been considered (Fig. 16).
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The impact of each of the datasets used in our analysis on
the extraction of the pion PDFs is indicated in Fig. 10 at a
scale μ2 ¼ 10 GeV2. In particular, Monte Carlo sampling
has been carried out for three data selections: (i) pT-
integrated Drell-Yan only; (ii) pT-integrated Drell-Yan and
LN data; and (iii) pT-integrated and pT-differential Drell-
Yan along with LN data. The effects on the PDFs and their
1σ uncertainties of adding each new dataset sequentially is
shown, together with the relative errors with respect to the
mean values of each data selection fit, as ratios of the square
roots of the variances divided by the expectation values,ffiffiffiffiffiffiffiffiffiffiffi
V½fπi #

p
=E½fπi #. While data selection in scenario (i) allows

reasonably tight constraints on the valence quark PDF qπv,
the sea quark qπs and gluon gπ PDFs have very large
uncertainties. Clearly the biggest overall impact on the
PDFs uncertainties is scenario (ii), in which the addition of
the HERA LN data constrains significantly the small-x

region for the gluon and the sea distributions, with modest
effect on the valence distribution. This is consistent with
what was previously observed in Ref. [3].
The novel addition of the pT-dependent Drell-Yan data

in scenario (iii), has a modest impact on the shapes of the
pion PDFs and their uncertainties. The strongest impact is
on the gluon distribution at large values of x, x≳ 0.3. This
may be expected, given the sensitivity of the pT-differential
cross section on the pion’s gluon PDF at lowest order in αs.
However, since the cross section at large x is still mostly
dominated by contributions from valence quarks, the
overall impact on the glue is not overwhelming. In other
kinematic regions, the reduction in the PDF uncertainties
after inclusion of the pT-dependent Drell-Yan data is also
relatively small, which reflects the larger errors of these
data in Fig. 7 than for the pT-integrated Drell-Yan and LN
data in Figs. 5 and 6, respectively.

FIG. 9. Comparison of the pion valence quark qπv, sea quark qπs , and gluon gπ (scaled by 1=10) PDFs from the current JAM analysis
(red bands) at μ2 ¼ 10 GeV2 with the xFitter results [14] (yellow bands) and the GRV parametrization [11] (blue lines). The uncertainty
bands represent 1σ CL.

FIG. 10. Impact of datasets on pion valence quark (left), sea quark (middle) and gluon (right) PDFs at μ2 ¼ 10 GeV2. (Top) Reduction
of PDF xfπi uncertainty bands from fitting only pT-integrated Drell-Yan data (green), Drell-Yan and LN (blue), and pT-integrated and
pT-dependent Drell-Yan and LN data (red). (Bottom) Corresponding relative 1σ uncertainties, as ratios of the square roots of the
variances divided by the expectation values

ffiffiffiffi
V

p
=E for each PDF flavor fπi , for each of the datasets fitted.

CAO, BARRY, SATO, and MELNITCHOUK PHYS. REV. D 103, 114014 (2021)

114014-12

JAM [Phys.Rev.D103]

Comparison of methodologies:

bootstrap+ IMC vs. metamorph parametrization in xFitter
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Gluon PDF compared with lattice QCD results
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Momentum fractions
As it turns out, the valence sector was not as exciting as expected — sea and gluon separation got most of our attention!


The addition of leading-neutron data does not shift the momentum fractions once the uncertainty appropriately include 
representative sampling. 


12

question the meaning of a perturbative description of
the pion at mid-energies, e.g., [19, 21]. Both will lead
to implications on observables. The nonperturbative
origin of the pion is expected to influence the large-x810

behavior of its PDF, as a consequence of dynamical mass
generation. The broadening of the pion PDF at low
scales interplays with the early-QCD prediction of quark-
counting rules, both being represented as a polynomial
form and, therefore, subject to polynomial mimicry [22].815

VI. THE FANTÔMAS PARTON DISTRIBUTIONS
OF THE PION
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FIG. 9. Histogram of values for the momentum fractions
for the valence (red), gluon (green) and sea (blue) FantoPDF
distributions. Vertical boundaries represent the intervals
of momentum fractions for pre-Fantômas fits with DY only
(Fig. 5). All results are at Q0.

The final ensemble for the Fantômas pion PDF is se-
lected based on the most diverse central values that have
been retained, given the Q0 behavior [highlighted curves820

in Fig. 8]. Four Hessian sets were combined using the
mcgen technique [9]; the four final sets are converted to
50 Monte-Carlo replicas each and then combined into the
final Fantômas Monte-Carlo ensemble. The combination
of sets proceeds using symmetric uncertainties, linear825

scaling, as well as a small shift so that the central value
of the resulting Monte Carlo set reproduces the central
value of the input Hessian set [51]. The original sets are
not weighted, as the di↵erence in the number of degrees
of freedom for each original Hessian set is negligible w.r.t.830

the number of data points Npts.6

The statistical meaning of the Fantômas ensemble dif-
fers from the probability distribution expected e.g. from
resampling, as illustrated in Fig. 3. The Hessian solutions

6 This procedure is similar to the PDF4LHC21 combination [52].

FIG. 10. Correlation ellipse for the momentum fractions for
the sea and gluon distributions at Q0.

are obtained on unfluctuated (original) data and selected835

based on a sampling over parametrizations that can
be understood as unfactorizable priors. The figure-of-
merit �2 implicitly contains a penalty term from the
choice of functional form, in the sense of the augmented
likelihood of Ref. [53]. In turn, this prior contributes to840

the correlation between the theoretical estimate of the
pion PDF-related observable and the sampling over this
estimate – a quantity called confounding correlation or
data defect correlation [see [8] and references therein].
The confounding correlation interplays with the data845

quantity and aleatoric uncertainty of the data itself when
evaluating the distance of the observable estimate from
the true measure. As such, it contributes to the epistemic
uncertainty of the pion PDF.
The Fantômas pion PDF ensemble, displayed in850

Fig. 11, is built from fits for which the chi-square
values of the central PDF ranges between �2/Npts 2
[1.08(440.4/408), 1.10(450.8/408)], improving xFitter’s
original DY result. The ratios of the four original
likelihoods are encompassed by the ��2 value without any855

specific distribution pattern. [NOTE: AC – rephrase

previous sentence, probably. ] From this ensemble of
pion PDFs with comparable chi squares, we can evaluate
and compare the results for the sum rules. The valence
sum rule governs the normalization of the valence pion860

PDF, while the momentum sum rule imposes a condition
on the gluon normalization which, in turn, a↵ects the
momentum fractions of each flavor. The latter are
given in Fig. 9. The picture that emerges from the
distributions of the momentum fractions demonstrates865

that flexibility of the functional form is a key ingredient
to evaluate the (epistemic) uncertainties of PDFs. In
particular, the addition of leading-neutron data does not

Increased uncertainty on all three .


Valence fraction   
compatible with lattice results. 

⟨xfq⟩

⟨xfv⟩(Q = 2 GeV) = 0.48 ± 0.05
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Momentum fractions

Momentum-fraction distributions for gluon and sea are largely (anti)-
correlated.


We obtain .


Funny fact: some lattice results for gluon momentum fraction suggest a very 
large fraction of the momentum is carried by the gluon, in an incompatible 
proportion wrt the valence. 


⟨xfg⟩(Q = 2 GeV) = 0.28 ± 0.08
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Hypothesis testing from PDFs
⇨ Hypothesis testing for functional behavior constraints — do PDFs fall off like ?(1 − x)β

In any inference about primordial dynamics, unbiased determination of the PDF functional 
form must be fully evaluated to consider an iif validation of polynomial shapes.
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Hypothesis testing from PDFs
⇨ Hypothesis testing for functional behavior constraints — do PDFs fall off like ?(1 − x)β

In any inference about primordial dynamics, unbiased determination of the PDF functional 
form must be fully evaluated to consider an iif validation of polynomial shapes.

µ2
0
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II. QUARK COUNTING RULES AND QCD
FACTORIZATION

A. Weakly coupled gauge theory

1. QCRs for structure functions

The QCRs for a structure function FðxB;Q2Þ in lepton-
hadron deeply inelastic scattering arise from the parton
model in gauge theories with small quark-boson coupling
constants, such as QED or asymptotically free QCD.
Consider a Feynman diagram in Fig. 1(a) in such a weakly
coupled theory with massless quarks. The diagram corre-
sponds to scattering of a virtual photon γ#ðqÞ on a highly
boosted “proton” pðPÞwhose lowest Fock state entering the
hard scattering (at momentum resolution scales somewhat
below Q2 ≡ −q2) consists of three weakly bound quarks.
(Alternatively, we could consider scattering on a “meson”
consisting of a quark and an antiquark.) ϕ is the low-energy
(long-distance) part of the hadronic wave function, describ-
ing the binding of quarks into the hadron at virtualities much
less thanQ2.H, the hard-scattering subgraph of the diagram,
can be approximated by the quark-photon bag diagram (the
squared tree-level amplitude of the γ#q scattering) if all
couplings are small. The diagram in Fig. 1(a) dominates
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The ð1 − xBÞ power law for F2ðxB;Q2Þ thus arises when
the ðns þ 1Þ-quark Fock state dominates in the xB → 1
limit. In this picture, the (1 − x) falloff is driven primarily
by semihard gluon propagators binding the ðns þ 1Þ quarks
before the hard scattering, on the top of long-distance
binding effects included in the nonperturbative wave
function ϕ. The QCRs were initially demonstrated based
on the examination of leading perturbative diagrams
[22,29,30] as well as analyticity of partial-wave amplitudes
[31] and including helicity dependence as in Eq. (1) [22].
They are also expected to apply in various nonperturbative
approaches; see examples in Sec. II B. Adding even more
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⇨ Hypothesis testing for functional behavior constraints — do PDFs fall off like ?(1 − x)β

In any inference about primordial dynamics, unbiased determination of the PDF 
functional form must be fully evaluated for an iif validation of polynomial shapes.

Quark-counting rules:

Early-QCD predicted behavior for structure functions 
when one quark carries almost all the momentum fraction

fqv/P (x) ���!x!1
(1� x)3, fqv/⇡(x) ���!x!1

(1� x)2
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Corrective terms might need to be taken into account [large-x resummation].

ASV found compatibility with .

JAM did it and found an exponent between 1 to ~2.5, depending on the prescription.
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FIG. 5. E↵ective large-x exponent �e↵ for the valence quark distribution as a function of x at the

input scale µ = mc extracted from lattice data alone (yellow bands), experimental data alone (blue

bands), and both lattice and experimental data (red bands) from the NLO (left) and NLO+NLLDY

(right) methods.

The PDFs extracted from only the experimental data carry large uncertainties, especially

in the NLO+NLLDY case, and including the precise lattice data decreases the uncertainty

significantly. However, including the systematic corrections again increases the uncertainty

of the PDFs, because of the increase in the number of parameters, but nevertheless provides

a sizable impact. The behavior of the relative uncertainty in the gluon distribution across

the scenarios is opposite to that for the quark distributions, which can be attributed to the

redistribution among the parton flavors across the scenarios.

The e↵ective �v parameter describes the degree of fallo↵ at large x in the valence quark

distribution, and operationally we define [111–113]

�e↵(x, µ) =
@ log |qv(x, µ)|

@ log(1 � x)
(21)

at the scale µ. To obtain the PDF when extracting from lattice data alone, precise data

over a large range of ⌫ is needed. Joó et al. [49] found �e↵ ⇠ 1, but with a large uncertainty,

because of the limited range of ⌫. The recent analysis of experimental data in Ref. [14] found

�e↵ ⇠ 1 with NLO hard coe�cients, and �e↵ ⇠ 1.2 when using NLO+NLLDY with double

Mellin threshold resummation on the hard coe�cients in DY.

In the present analysis, we include the Rp-ITD lattice data and demonstrate in Fig. 5

that the �e↵ resulting from each method of the short distance DY coe�cients agrees, within
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Towards epistemic uncertainty: sampling over parameter space more representative 

Pion PDFs with representative sampling over the space of solutions — here, parametrization is extended.


Not included (for now): uncertainties from scale dependence, nuclear PDF set, threshold resummation.
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model dependence, we found the reconstructed DA to be
sensitive to the prior that is applied. This is not surprising
given that the essential content in our quasi-DA matrix
element in the range of λ we used is a2, and the problem
posed by such limited information in the DA reconstruction
is well known in the literature. However, the use of the
C1=2þα
n basis was useful to quantitatively and systematically

reconstruct the pion DA that depends on the extent to which
one allows the DA to deviate from the default one-
parameter model. Thus, the panels of Fig. 8 together
convey this prior dependent knowledge of DA from our
quasi-DA matrix element.
We repeated the above fits for all analysis choices, which

now includes the truncation order NG ¼ 2, 3 and 4 in
Eq. (46). In the top panel of Fig. 9, we show our estimate of
the pion DA as a function of u, after taking into account all
the analysis variations, and summarize them with the
statistical and systematic error bands. To be cautious, we
present the reconstruction using a relatively broad prior
width δ ¼ 0.2 on the expansion coefficients. Nevertheless,
the reconstruction in the case of DA is sensitive to the value
of δ, however large it is, and hence, one should interpret the
reconstruction of DA in Fig. 9 as a specific u dependence,
given a somewhat broad prior. We compare our result with
the asymptotic DA shown as the black dashed curve.
Within the precision allowed at δ ¼ 0.2, we can only
resolve an overall flat DA over a range of u ∈ ½0.2; 0.8$
with sharp fall offs, uα and ð1 − uÞα with α ≈ 0.3, to 0 on
either side. If one focuses only on the central value of the
reconstructed DA, one sees a tendency for a platykurtic DA
as noted in Refs. [97–99]. The lattice data do not have the
sensitivity to further resolve the concavity or convexity
within the flatter regions, unless one is willing to impose a
more stringent prior width δ. Apart from providing a
reconstruction of the DA, the Ansatz based analysis also
provides a way to estimate the moments of DA. The usage
of Ansatz can be thought of as a way to regulate the values
of moments at larger n for which the lattice data are less
constraining, and therefore, provide robust values for
smaller-n moments. From the Ansatz based analysis above
with δ ¼ 0.2, we estimate the Mellin moments as

hx2i ¼ 0.2845ð44Þð58Þ;
hx4i ¼ 0.1497ð50Þð38Þ: ð48Þ

By comparing the values with Eq. (42), we see that the
Ansatz based reconstruction for hx2i agrees quite well with
the completely model-independent reconstruction. The
estimates of hx4i also agree with each other, however,
the usage of Ansatz has substantially reduced the error.
Thus, from both the model-independent moments analysis
and the model-dependent reconstruction analysis, we find
the values of hx2i and hx4i to be the quantities that we could
reliably extract from our lattice data.

As another way to summarize our results with less
modeling artifacts, we present the MS light-front ITD
corresponding to the pion DA in the bottom panel of
Fig. 9 in the range of λ that we have lattice data for and
performed our analysis on. To infer the MS ITD, we used
Eq. (11). Since we need only the information on the Mellin

FIG. 9. (Top panel) The pion DA reconstructed using the
C1=2þα
n basis with the constraint δ ¼ 0.2. The inner dark band

is the statistical error band. The outer light band is the combined
statistical and systematic error band. Variations in the fitted range
of z3, reference momentum P0

z , type of lattice correction and
higher-twist corrections added were taken into account in
summarizing the result in the figure. The asymptotic limit of
DA is shown as the black curve. (Bottom panel) The plot shows
the light-front MS pion ITD corresponding to the pion DA in the
panel above, as the red band. The ITD expected from the fits to
Mellin moments is shown as the blue band. In both cases,
statistical and combined statistical-systematical error bands are
shown. For comparison, the ITDs corresponding to the asymp-
totic DA (black dot-dashed curve) and flat DA (magenta dot-
dashed curve) are also shown.
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Wiggly and flat DA at  GeV.

Second moment at  GeV similar to NJL at  !

Q = 2
Q = 2 Q0

What’s next?

 plays an important rôle in PDF analyses.  Can we improve our understading of the pion from data by varying the 


phenomenological starting scale? How to update the parameter-fixing of non-perturbative models?
Q0
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Fig. 2 Drell–Yan pairs production in π−W collisions. Next-to-leading order cross sections obtained by using evolved NJL pion PDFs for three
values of Q2

0 are compared to data of Ref. [44]

scale associated to the pion NJL model. The other two curves
in Fig. 2, corresponding to Q2

0 = 0.19 GeV2 and Q2
0 = 0.25

GeV2 respectively, are added, in order to show the sensitivity
to this particular choice of infrared Q2

0. It is worth noticing
that the results show an acceptable agreement, both in shape
and in normalisation. More in detail, a tendency of the the-
ory to undershoot the data is identified in the range of small
xF (−0.2 < xF < 0.2). This deficiency is not unexpected
since, in the mentioned kinematic region, the dominant con-
tribution to the cross sections involves sea quarks and gluons
which are absent at Q2

0 and are radiatively generated by QCD
evolution. This is a typical drawback of models which con-
tain only valence contributions at the hadronic scale. At this
point we would like to mention that the theoretical descrip-
tion of the xF -spectra at large xF and the determination of
pion parton distributions can be further improved employ-
ing resummation techniques presented in Refs. [49,52,53].
It is worth noticing that, as shown in those papers, threshold
NLL resummation of the Wilson coefficients leads to larger
cross sections at large x with respect to NLO ones. This,
in turn, implies softer pion PDFs at large x . In the present

context, this fact would imply a scale Q2
0 for the NJL model

lower than the one already determined by using NLO Wilson
coefficients in Eq. (20).

3 Predictions for πW collisions data

Predictions for the πW Drell–Yan cross sections are obtained
once appropriate modifications are implemented in Eq. (2).
Evolved NJL pion parton distributions replace proton PDFs
for hadron 1. Moreover the non-perturbative form factor
Sh1h2
N P (b) depends on the particle species initiating the reac-

tion. Therefore in πW collisions the latter is written as fol-
lows:

SπW
N P (b) = Sπ

N P (b)
√
S pp
N P (b) , (22)

where Sπ
N P (b) is given in Eq. (19) and the square root on

S pp
N P (b), given in Eq. (12), takes into account that now only

one proton is involved in the process. It is instructive to
directly compare the proton and pion non perturbative trans-
verse distributions used in the calculation. It is important to

123

[Ceccopieri et al, EPJC78]

NJL
μ2

0 < Q2
0 μ2

0 < Q2
0 μ2

0 < Q2
0

[X. Gao et al., PRD106]

From PDFs to DAs
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The Fantômas project beyond the pion 

The metamorph functional form can be used for various correlation functions 

 unpolarized proton PDF —extending CT’s use of Bernstein basis


 twist-3 proton PDF — IFUNAM in charge


 nuclear PDF?


 helicity? transversity? — possibility to impose positivity constraints


 looking for more suggestions…

xFitter
PDF Fitting package

xFitter developers

March 17, 2017

Abstract

The determination of the proton patron distribution functions is a complex endeavor involving
several physics processes. The main process is deep-inelastic scattering and the central data set
covering most of the proton structure phase space is provided at the HERA ep collider. Further
processes (fixed target DIS, ppbar collisions etc.) provide further constraints for particular aspects:
flavor separation, very high Bjorken-x etc. In particular, the precise measurements obtained or to
come from LHC will continue to improve the knowledge of the PDF. The xFitter project aim at
providing a framework for QCD analyses related to proton structure in the context of multi-processes
and multi-experiments. The framework includes modules or interfaces enabling a large number of
theoretical and methodological options, as well as a large number of relevant data sets from HERA,
Tevatron and LHC. This manual explains the theoretical input used in the QCD analysis, the fit
methodology and the installation procedure of the program. More information and the package
downloads can be found on the web site http://xfitter.org.

Fantômas will be included in the original xFitter framework

Everyone is welcome to use it and/or collaborate on it.
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Conclusions
⇨ Uncertainties come from various sources in global analyses. 

 Extension to sampling accuracy, here sampling occurs over parametrization forms.

⇨ Rôle of the parametrization in the sampling accuracy: we make use of Bézier-curve methodology

Fantômas4QCD framework [to appear very soon]
metamorph can be used to study many functions 

Reliable uncertainty on the pion PDF analysis (to NLO)
re: larger where no data constrains 

Sea-gluon separation requires more data — a very interesting sector!
End-point behavior of valence pion distributions seems to follow a  fall-off. 

⇨ Fantômas code can be used in inverse problems for other correlation functions — transversity, nuclear PDFs,…

⇨ positivity constraints can be implemented, too

qπ(x, Q2)

(1 − x)
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