Revealing the fundamental character of the strong force

From PDFs to the underlying QCD

Fred Olness SMU

Thanks for substantial input from my friends & colleagues

CFNS Stony Brook U 21 September 2023

Objects in mirror are closer than they appear

A Deeper Understanding of the strong nuclear force

Do we really understand QCD ... push to extreme {x,Q}

6/43

Need theoretical guidance in these regions

precision $f_A(x,Q)$ can serve as Boundary Condition for $f_A(x,Q,k_T,b_T,\sigma)$

Strange PDF

nuclear parton distribution functions

vDIS ... has a significant impact on the strange quark PDF

Strange PDF: *v* Nucleon di-muon Production

Puzzle: Split Personality ... What is the correct Nuclear ratio

nCTEQ: Faiq Muzakka, Karol Kovarik, ...

Iron (*proton+neutron*)

nCTEQ: K.F. Muzakka, ... Phys.Rev.D 106 (2022) 7, 074004

What is the correct nuclear correction ???

Are these data sets compatible???

11

0.9

Charm Jets at the EIC

JLAB-PHY-20-3205, SMU-HEP-20-05

Charm jets as a probe for strangeness at the future Electron-Ion Collider

Miguel Arratia,^{1,2} Yulia Furletova,² T. J. Hobbs,^{3,4} Fredrick Olness,³ and Stephen J. Sekula³,^{*}

W and Z Boson Production¹⁴ at the Large Hadron Collider (LHC)

nCTEQ: Tomas Jezo, Aleksander Kusina, Fred Olness, ...

 $p p \rightarrow W, Z$ $p Pb \rightarrow W, Z$

LHC Heavy Ion

... there's another way to measure the strange quark

Surprise: ... LHC sees more strange than expected

$$u\bar{d} + u\bar{\mathbf{s}} + \mathbf{c}\bar{d} + \mathbf{c}\bar{\mathbf{s}} \rightarrow W^{+}$$

$$\bar{u}d + \bar{u}\mathbf{s} + \bar{\mathbf{c}}d + \bar{\mathbf{c}}\mathbf{s} \rightarrow W^{-}$$

$$u\bar{u} + d\bar{d} + \mathbf{s}\bar{\mathbf{s}} + \mathbf{c}\bar{\mathbf{c}} \rightarrow Z$$

Surprise:

We expected $r_s = 1/2$ LHC finds $r_s > 1$

pPb Heavy Ion Case: ... LHC STILL sees more strange than expected¹⁶

Eur.Phys.J.C 80 (2020) 10, 968

Measuring the nuclear Gluon PDF¹⁷

Parton Distribution Functions

Gluon: Nuclear Medium Effects at small momentum fraction (x)

Precision Gluon can help study nuclear medium effects

nCTEO: Pit Duwentaster Michael Klasen Data set $\sqrt{s_{NN}}$ [GeV] Observ. No. points 5 PHENIX π^0 200 R_{dAu} 21Q = 2 GeVPHENIX η 12 200 R_{dAu} nCTEO15+SIH PHENIX π^{\pm} 200 R_{dAu} 4 20PHENIX K^{\pm} 200 R_{dAu} 15 $STAR\pi^0$ R_{dAu} 20013 $xg^{Pb}(x)$ STAR η 200 R_{dAu} 7 **Semi-Inclusive** STAR π^{\pm} 200 R_{dAu} 23**Hadron (SIH)** ALICE 5 TeV π^0 5020 R_{pPb} 31 production ALICE 5 TeV η 5020 16 R_{pPb} nCTEQ15 ALICE 5 TeV π^{\pm} 5020 R_{pPb} 58 ALICE 5 TeV K^{\pm} 5020 R_{pPb} 58 1 nCTEQ15 Pb ALICE 8 TeV π^0 8160 30 R_{pPb} Q = 2 GeVnCTEQ15SIH Pb ALICE 8 TeV η 8160 R_{pPb} 14 With eta data $0 + 10^{-3}$ 10^{-1} 10^{-2} X nCTEQ15 Pb208 1.8 nCTEQ15WZ **UPDATE** ... 1.6 nCTEQ15WZ+SIH 1.4 nCTEQ15HQ add HQ data *d/d* 1.0 0.8 **Determines** gluon in small x region 0.6 0.4 Impact of heavy quark and quarkonium data on nuclear gluon PDFs nCTEQ: Phys.Rev.D 105 (2022) 11, 114043 0.2 10^{-4} 10-3 10-2 10^{-1} 100

X

Impact of inclusive hadron production data on nuclear gluon PDFs **nCTEQ**: P. Duwentäster, et al., PRD104 (2021) 094005.

SURGE Collaboration

investigating gluon structure in extreme kinematic regions

Color Glass Condensate effective field theory

arXiv:2308.00022

Back-to-back inclusive dijets in DIS at small x: Complete NLO results and predictions Paul Caucal, Farid Salazar, Björn Schenke, Tomasz Stebel, Raju Venugopalan

XFITTER

Motivation for Improved Treatment

Small x (Low Q): need to improve fits NNLO: "fits at NNLO do not improve agreement"

HERAPDF2.0 shows tensions between data and fit, independent of the heavy-flavour scheme used, at low Q^2 , i.e. below $Q^2 = 15 \text{ GeV}^2$, and at high Q^2 , i.e. above $Q^2 = 150 \text{ GeV}^2$. Comparisons between the behaviour of the fits with different Q_{\min}^2 values indicate that the NLO theory evolves faster than the data towards lower Q^2 and x. Fits at NNLO do not improve the agreement. HERAPDF2.0 NNLO and NLO have a similar fit quality.

xFitter Resummation Study

xFitter Developers' Team: Eur.Phys.J.C 78 (2018) 8, 621

Features & Recent Updates:

NNLO DGLAP Photon PDF & **QED** Pole & MS-bar masses Profiling and Re-Weighting **BFKL** interface

Heavy Quark Variable Treshold Improvements in χ^2 and correlations **TMD** PDFs (uPDFs) ... and many other

xFitter 2.2.0 **Future Freeze**

x (3) 🛅 🖬 📀 🕲 🔨 🖱 🥽 🗑 🐨 🦉 🛅 🏵 ち 🦰 🍳 🔯 🜌 🔍 🔳

Oracle VM VirtualBox Manager

Applications Places

Machine Help

Francesco Giuli (He/Him) · 2nd

Senior Research Fellow at CERN with the ATLAS experiment

https://smu.box.com/s/78k1jr8l1ahrtd1h1t3khz05l1amh2g7

28/03/23

Francesco Giuli - francesco.g

Francesco Giuli $({\rm He}/{\rm Him}) \cdot 2nd$ Senior Research Fellow at CERN with the ATLAS experiment

Charged Pion PDF

- Comparison with recent pion PDF determinations:
 - JAM collaboration
 - GRVPI1 pion PDF set
- Valence distribution in good agreement with JAM and both disagree with the early GRV analysis
- The relatively hard-to-determine sea and gluon distributions are different in all the three PDF sets

Fantômas4QCD: the pion PDF

QCD4EIC 23

HIX JLAB

Challenges at Large x & Low Q^2 : JLab data \Rightarrow EIC

uclear parton distribution function

Target Mass Corrections (TMC)

The challenge of a multi-scale problem

Ingo Schienbein, Chloe Leger, Richard Ruiz ...

Target mass corrections in lepton-nucleus DIS: theory and applications to nuclear PDFs nCTEQ: R. Ruiz, et al.,

Target Mass Corrections (TMC) for nuclear processes

Ingo Schienbein, Chloe Leger, Richard Ruiz ...

Short Range Correlations (SRC)

nCTEQ with

Andrew Denniston & Or Hen

32

$$\mathbf{f}_{\mathrm{A}} = (1 - c) \mathbf{f}_{\mathrm{p}} + c \mathbf{f}_{\mathrm{SRC}}$$

nuclear no PDF pr P

normal proton PDF SRC modified PDF

Short Range Correlations (SRC)

Short Range Correlations (SRC)

CONCLUSIONS

Do we really understand QCD ... **push to extreme {x,Q}** 35/43

Need theoretical guidance in these regions

nPDF Wish List

www.ncteq.org

nPDF General Issues:

• Proton PDF; nuclear corrections for interpreting heavy target DIS (Ar, Fe, Pb).

Strange quark & Gluon PDF:

- Resolve tension between fixed-target (νN , ℓN) and collider expectations (W[±],Z)

<u>Charm & Bottom: c(x) & b(x)</u>

- Multi-scale & resummation issues: $Log(m_{c,b}/Q)$
- "Fitted" charm: $c(x) \neq 0$ at m_c
- Intrinsic heavy flavors: $c(x) \neq 0$ at $Q < m_c$

Neutrino cross sections on heavy targets (Ar, Fe, Pb)

• Universality of Neutral Current (γ) & Charged Current (W^{\pm}) processes

Expanded {x,Q²} Kinematic Regime

- Small-x saturation, resummation: Log[1/x]
- Large-x higher twist: (M^2/Q^2)
- Low Q² non-perturbative effects

Compilation by Fred Olness with helpful feedback from: Alberto Accardi, Tim Hobbs, Tomas Jezo, Thia Keppel, Michael Klasen, Karol Kovarik, Aleksander Kusina, Jorge Morfin, Pavel Nadolsky, Jeff Owens, Ingo Schienbein, Efrain Segarra, Steve Sekula, Ji-Young Yu

EXTRAS

... the ultimate goal for nPDFs

QCD: From Parameterization to a Deeper Understanding

Proton PDF: $f_p(x,Q)$

generally NNLO; approaching ~1% precision; Boundary Conditions for nuclear PDF

Nuclear PDF: $f_A(x,Q)$

generally NLO; leverage proton PDF tools; recent progress encouraging (e.g., PDG)

with EIC, evolve from parameterizing to deeper understanding of QCD

Extend kinematic {x,Q} range: ... probe extreme regions of QCD

Low Q: non-perturbative region; correlation effects ...

Low x: resummation; saturation; BFKL; ...

Low W: resonance region; duality; ...

Need theoretical guidance in these regions

Extend Unpolarized Colinear to Spin, TMD & GPD

... explore full tomographic nuclear structure in spin, k_T , b_T precision $f_A(x,Q)$ can serve as Boundary Condition for $f_A(x,Q,k_T,b_T,\sigma)$ include Lattice QCD info on moments and quasi-PDFs

Need coordination/communication between efforts

QCD: From Parameterization to a Deeper Understanding

42

nCTEQ15HIX include large x JLab data

We can extend our kinematic reach in {x,Q²}

JLab data: Shifts valence PDFs from low to hi-x

what about mid x region