Transversity PDFs and GPDs from lattice QCD

Martha Constantinou

CFNS Workshop

TMDs: Towards a Synergy between Lattice QCD & Global Analysis

June 22, 2023

T

Rapid Communications

Transversity parton distribution functions from lattice QCD

PHYSICAL REVIEW D 99, 114504 (2019)

Systematic uncertainties in parton distribution functions from lattice QCD simulations at the physical point

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou,⁴ Kyriakos Hadjiyiannakou,² Karl Jansen,⁵ Aurora Scapellato,^{1,6} and Fernanda Steffens⁷

Twist-2 PDFs & GPDs: "traditional calculations

'SICAL REVIEW D 105, 034501 (2022)

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou^{,4} Kyriakos Hadjiyiannakou,^{1,2} Karl Jansen,⁵ Aurora Scapellato,⁴ and Fernanda Steffens⁶

M. Constantinou, CFNS - TMDs June 2023

- ★ Key universal non-perturbative tools for study of hadron structure
- **★** Global analyses: main source of information for distribution functions
- ★ Global fits improved: theoretical advances & new data
- ★ ambiguities due to limited kinematic regions, limited measurements, etc

- ★ Key universal non-perturbative tools for study of hadron structure
- **★** Global analyses: main source of information for distribution functions
- ★ Global fits improved: theoretical advances & new data
- ★ ambiguities due to limited kinematic regions, limited measurements, etc

[Ethier & Nocera, Ann. Rev. Nucl. Part. Sci. 70 (2020) 1, arXiv:2001.07722]

- ★ Key universal non-perturbative tools for study of hadron structure
- **★** Global analyses: main source of information for distribution functions
- ★ Global fits improved: theoretical advances & new data
- ★ ambiguities due to limited kinematic regions, limited measurements, etc

- ★ Key universal non-perturbative tools for study of hadron structure
- **★** Global analyses: main source of information for distribution functions
- ★ Global fits improved: theoretical advances & new data
- ★ ambiguities due to limited kinematic regions, limited measurements, etc

- ★ Key universal non-perturbative tools for study of hadron structure
- **★** Global analyses: main source of information for distribution functions
- ★ Global fits improved: theoretical advances & new data
- ★ ambiguities due to limited kinematic regions, limited measurements, etc

Calculation from first principle (lattice QCD) can help in the estimation of PDFs

Twist-classification of PDFs, GPDs, TMDs

- **★** Twist: specifies the order in 1/Q at which the function enters factorization formula for a given observable
- ★ Twist-2: probabilistic densities a wealth of information exists
- ★ Twist-3: poorly known, but very important:
 - as sizeable as twist-2
 - contain information about quark-gluon correlations inside hadrons
 - appear in QCD factorization theorems for various observables (e.g. g_2)
 - certain twist-3 PDFs are related to the TMDs
 - physical interpretation (e.g. average force on partons inside hadron)

 $f_i = f_i^{(0)} + \frac{f_i^{(1)}}{O} + \frac{f_i^{(2)}}{O^2} \cdots$

Twist-classification of PDFs, GPDs, TMDs

- **★** Twist: specifies the order in 1/Q at which the function enters factorization formula for a given observable
- ★ Twist-2: probabilistic densities a wealth of information exists
- ★ Twist-3: poorly known, but very important:
 - as sizeable as twist-2
 - contain information about quark-gluon correlations inside hadrons
 - appear in QCD factorization theorems for various observables (e.g. g_2)
 - certain twist-3 PDFs are related to the TMDs
 - physical interpretation (e.g. average force on partons inside hadron)

While twist-3 $f_i^{(1)}$ share some similarities with twist-2 $f_i^{(0)}$ in their extraction, there are several challenges both experimentally and theoretically

 $f_i = f_i^{(0)} + \frac{f_i^{(1)}}{O} + \frac{f_i^{(2)}}{O^2} \cdots$

Through non-local matrix elements of fast-moving hadrons

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

$$\tilde{q}_{\Gamma}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$$

$$\Delta = P_f - P_i$$
$$t = \Delta^2 = -Q^2$$
$$\xi = \frac{Q_3}{2P_3}$$

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

M. Constantinou, CFNS - TMDs June 2023

PHYSICAL REVIEW D 98, 091503(R) (2018)

Rapid Communications

Transversity parton distribution functions from lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou,⁴ Karl Jansen,⁵ Aurora Scapellato,^{1,6} and Fernanda Steffens⁷

PHYSICAL REVIEW D 99, 114504 (2019)

Systematic uncertainties in parton distribution functions from lattice QCD simulations at the physical point

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou,⁴ Kyriakos Hadjiyiannakou,² Karl Jansen,⁵ Aurora Scapellato,^{1,6} and Fernanda Steffens⁷

Wittended Twisteor Has Collaboration

★ Nf=2 twisted mass fermions with a clover term @ physical point

[Extended Twisted Mass Collaboration, Phys. Rev. D 95, 094515 (2017)]

$\beta = 2.10, c_{SW} = 1.57751, a =$	$= 0.0938(3)(2) \text{ fm}, r_0/a = 5.32(5)$
$48^3 \times 96, L \approx 4.5 \text{ fm}$	$a\mu = 0.0009$ $m_{\pi} = 0.1304(4) \text{ GeV}$ $m_{\pi}L = 2.98$ $m_{N} = 0.932(4) \text{ GeV}$

Whended Twister

★ Nf=2 twisted mass fermions with a clover term @ physical point

[Extended Twisted Mass Collaboration, Phys. Rev. D 95, 094515 (2017)]

$\beta = 2.10, c_{SW} = 1.57751, a$	$= 0.0938(3)(2) \text{ fm}, r_0/a = 5.32(5)$
$48^3 \times 96, L \approx 4.5 \text{ fm}$	$a\mu = 0.0009$
·	$m_{\pi} = 0.1304(4) \text{ GeV}$
	$m_{\pi}L = 2.98$
	$m_N = 0.932(4) { m GeV}$

$P_3 = \frac{6\pi}{L}$			$P_3 = \frac{8\pi}{L}$				$P_3 = \frac{10\pi}{L} \sim 1.38 \text{ GeV}$							
	Ins.	$N_{ m conf}$	N_{HP}	$N_{\rm meas}$	Ins.	$N_{ m conf}$	N_{HP}	$N_{\rm LP}$	$N_{\rm meas}$	Ins.	$N_{ m conf}$	$N_{\rm HP}$	$N_{ m LP}$	$N_{\rm meas}$
	γ^3	100	16	9600	γ^3	425	1	16	38250	γ^3	811	1	16	72990
	$\gamma^{ m o}$	50	16	4800	γ^0	425	1	16	38250	γ^0	811	1	16	72990
	$\gamma^5\gamma^3$	65	16	6240	$\gamma^5\gamma^3$	425	1	16	38250	$\gamma^5\gamma^3$	811	1	16	72990
	σ^{3j}	50	16	9600	σ^{3j}	425	1	16	38250	σ^{3j}	811	1	16	72990

Mf=2 twisted mass fermions with a clover term @ physical point

[Extended Twisted Mass Collaboration, Phys. Rev. D 95, 094515 (2017)]

$\Gamma_3 = \frac{1}{L}$				ľ	$_{3} = \frac{1}{1}$	5			P	$_3 \equivL$	$\sim 1.$	50 Gev	
Ins.	$N_{ m conf}$	$N_{ m HP}$	$N_{\rm meas}$	Ins.	$N_{ m conf}$	$N_{\rm HP}$	$N_{\rm LP}$	$N_{\rm meas}$	Ins.	$N_{ m conf}$	N_{HP}	$N_{\rm LP}$	$N_{ m meas}$
γ^3	100	16	9600	γ^3	425	1	16	38250	γ^3	811	1	16	72990
γ^0	50	16	4800	γ^0	425	1	16	38250	γ^0	811	1	16	72990
$\gamma^5\gamma^3$	65	16	6240	$\gamma^5\gamma^3$	425	1	16	38250	$\gamma^5 \gamma^3$	811	1	16	72990
σ^{3j}	50	16	9600	σ^{3j}	425	1	16	38250	σ^{3j}	811	1	16	72990

 \star

[Daniel Pitonyak, GHP 2023]

×

[Daniel Pitonyak, GHP 2023]

[Daniel Pitonyak, GHP 2023]

- ★ Field moves towards addressing systematic uncertainties
- ★ Disconnected contributions for flavor decomposition

[Daniel Pitonyak, GHP 2023]

- ★ Field moves towards addressing systematic uncertainties
- ★ Disconnected contributions for flavor decomposition

PHYSICAL REVIEW D 105, 034501 (2022)

Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou,^{1,2} Krzysztof Cichy,³ Martha Constantinou[®],⁴ Kyriakos Hadjiyiannakou,^{1,2} Karl Jansen,⁵ Aurora Scapellato,⁴ and Fernanda Steffens⁶

★ Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$	-01
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4	

P_3 [GeV] $\Delta \left[\frac{2\pi}{L}\right]$	$-t \; [{\rm GeV}^2]$	ξ	$N_{ m confs}$	$N_{\rm meas}$
0.83	(0,2,0)	0.69	0	519	4152
1.25	(0,2,0)	0.69	0	1315	42080
1.67	(0,2,0)	0.69	0	1753	112192
1.25	(0,2,2)	1.02	1/3	417	40032
1.25	(0,2,-2)	1.02	-1/3	417	40032

★ Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$	
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4	

$P_3 \; [{ m GeV}]$	$\mathbf{\Delta}\left[rac{2\pi}{L} ight]$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m confs}$	$N_{\rm meas}$
0.83	(0,2,0)	0.69	0	519	4152
1.25	(0,2,0)	0.69	0	1315	42080
1.67	(0,2,0)	0.69	0	1753	112192
1.25	(0,2,2)	1.02	1/3	417	40032
1.25	(0,2,-2)	1.02	-1/3	417	40032

[Meissner et al., JHEP 08 (2009) 056]

$$\begin{split} h_T^j(\Gamma_{\nu}, z, P_f, P_i) &= \langle \langle \sigma^{3j} \rangle \rangle F_{H_T}(z, \xi, t, P_3) + \frac{\imath}{2m} \langle \langle \gamma^3 \Delta_j - \gamma^j \Delta_3 \rangle \rangle F_{E_T}(z, \xi, t, P_3) \\ &+ \frac{P_3 \Delta_j - P_j \Delta_3}{m^2} \langle \langle \hat{1} \rangle \rangle F_{\widetilde{H}_T}(z, \xi, t, P_3) + \frac{1}{m} \langle \langle \gamma^3 P_j - \gamma^j P_3 \rangle \rangle F_{\widetilde{E}_T}(z, \xi, t, P_3) \end{split}$$

★ ERBL: decrease of H_T as -t increases

The DGLAP region shows less sensitivity in -t

- **★** ERBL: decrease of H_T as -t increases
- **The Derivative of the sensitivity in** -t
- ★ Qualitatively E_T , \widetilde{H}_T show approximate symmetry of quark & antiquark regions
- ★ $\widetilde{H}_T < 0$ as in scalar diquark model

[S. Bhattacharya et al, Phys. Rev. D 102, 054021 (2020)]

M. Constantinou, CFNS - TMDs June 2023

M. Constantinou, CFNS - TMDs June 2023

 \star [2 H_T + E_T](0) lowest Mellin moment:

transverse spin-flavor dipole moment in unpolarized target k_T

[M. Burkardt, Phys. Rev. D 72, 094020 (2005)]

★ $[2\widetilde{H}_T + E_T](0)$ second Mellin moment: related to transverse-spin quark angular momentum in unpolarized proton

★ $[2H_T + E_T](0)$ lowest Mellin moment:

transverse spin-flavor dipole moment in unpolarized target k_T

[M. Burkardt, Phys. Rev. D 72, 094020 (2005)]

★ $[2\tilde{H}_T + E_T](0)$ second Mellin moment: related to transverse-spin quark angular momentum in unpolarized proton

A distribution for $|\xi| = 1/3$ tends to be systematically lower than the one at $\xi = 0$

- ★ Qualitative understanding of GPDs and their relations
- ★ Qualitative understanding of ERBL and DGLAP regions

What can we currently check using lattice results?

What can we currently check using lattice results?

Adress system. effects
through sum rules
$$\int_{-1}^{1} dx \, H_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_{3}) = A_{T10}(t), \quad \int_{-1}^{1} dx \, x \, H_{T}(x,\xi,t) = A_{T20}(t), \quad \int_{-1}^{1} dx \, x \, E_{T}(x,\xi,t) = B_{T20}(t),$$
[S. Bhattacharya et al., PRD 102, 054021 (2020)]

$$\int_{-1}^{1} dx \, \tilde{H}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \tilde{H}_{Tq}(x,\xi,t,P_{3}) = \tilde{A}_{T10}(t), \quad \int_{-1}^{1} dx \, x \, \tilde{H}_{T}(x,\xi,t) = \tilde{A}_{T20}(t),$$
Sum rules not imposed

Sum rules not imposed in calculation

$$\int_{-1}^{1} dx \, \widetilde{E}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_{3}) = 0 \,. \qquad \qquad \int_{-1}^{1} dx \, x \, \widetilde{E}_{T}(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

What can we currently check using lattice results?

Adress system. effects
through sum rules
$$\int_{-1}^{1} dx \, H_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_{3}) = A_{T10}(t), \quad \int_{-1}^{1} dx \, x \, H_{T}(x,\xi,t) = A_{T20}(t), \\
\int_{-1}^{1} dx \, E_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_{3}) = B_{T10}(t), \quad \int_{-1}^{1} dx \, x \, E_{T}(x,\xi,t) = B_{T20}(t), \\
S. Bhattacharya et al., PRD 102, 054021 (2020)
$$\int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_{3}) = \widetilde{A}_{T10}(t), \quad \int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = \widetilde{A}_{T20}(t), \\
Sum rules not imposed in calculation
$$\int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_{3}) = 0. \qquad \int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t).$$

$$\mathbf{Results}
\int_{-2}^{2} dx H_{Tq}(x,0,-0.69 \, \text{GeV}^{2},P_{3}) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x,\frac{1}{3},-1.02 \, \text{GeV}^{2}) = 0.49(5), \\
\int_{-1}^{1} dx \, x \, H_{T}(x,0,-0.69 \, \text{GeV}^{2}) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-1}^{1} dx \, H_{T}(x,\frac{1}{3},-1.02 \, \text{GeV}^{2}) = 0.45(4), \\
\int_{-1}^{1} dx \, x \, H_{T}(x,0,-0.69 \, \text{GeV}^{2}) = \{0.20(2), 0.21(2), 0.24(3)\}, \quad \int_{-1}^{1} dx \, H_{T}(x,\frac{1}{3},-1.02 \, \text{GeV}^{2}) = 0.15(2). \\
A_{T10}(-0.69 \, \text{GeV}^{2}) = \{0.65(4), 0.65(6), 0.82(10)\}, \qquad A_{T10}(-1.02 \, \text{GeV}^{2}) = 0.49(5)$$$$$$

- lowest moments the same between quasi-GPDs and GPDs
- Values of moments decrease as *t* increases

<u>'T</u>

- Higher moments suppressed compared to the lowest

New parametrization of GPDs

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya[®],^{1,*} Krzysztof Cichy,² Martha Constantinou[®],^{3,†} Jack Dodson,³ Xiang Gao,⁴ Andreas Metz,³ Swagato Mukherjee[®],¹ Aurora Scapellato,³ Fernanda Steffens,⁵ and Yong Zhao⁴

★ Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	eta	N_{f}	$L^3 \times T$	$a~[{ m fm}]$	M_{π}	$m_{\pi}L$
cA211.32	1.726	u,d,s,c	$32^3 \times 64$	0.093	$260 { m MeV}$	4

frame	P_3 [GeV]	$\mathbf{\Delta}\left[rac{2\pi}{L} ight]$	$-t \; [\text{GeV}^2]$	ξ	$N_{\rm ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	(0,0,0)	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3, 0), \ (\pm 3, \pm 1, 0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.26	0	8	429	8	27456

Symmetric frame very expensive computationally

Theoretical setup

 $F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$

Goals

- (A) A_i are related to the standard H, E GPDs $\mathcal{H}_0^s(A_i^s; z) = A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6$
- (B) Extraction of standard GPDs using A_i obtained from any frame
- (C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

Theoretical setup

$$F_{\lambda,\lambda'}^{\mu} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$
Goals

- (A) A_i are related to the standard H, E GPDs $\mathcal{H}_0^s(A_i^s; z) = A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6$
- (B) Extraction of standard GPDs using A_i obtained from any frame
- (C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg, s/a} \cdot z} A_3$$

$$E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot zA_6 + 2\Delta_{s/a} \cdot zA_8$$

Theoretical setup

$$F_{\lambda,\lambda'}^{\mu} = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$
Goals
$$z(\Delta^2 + \Delta^2)$$

- (A) A_i are related to the standard H, E GPDs $\mathcal{H}_0^s(A_i^s; z) = A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6$
- (B) Extraction of standard GPDs using A_i obtained from any frame
- (C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3$$

$$E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot zA_6 + 2\Delta_{s/a} \cdot zA_8$$

(A) Proof-of-concept calculation ($\xi = 0$):

- symmetric frame: $\vec{p}_f^s = \vec{P} + \frac{\vec{Q}}{2}, \quad \vec{p}_i^s = \vec{P} \frac{\vec{Q}}{2} \quad -t^s = \vec{Q}^2 = 0.69 \, GeV^2$
- asymmetric frame: $\vec{p}_f^a = \vec{P}$, $\vec{p}_i^a = \vec{P} \vec{Q}$ $t^a = -\vec{Q}^2 + (E_f E_i)^2 = 0.65 \, GeV^2$

Comparison of A_i in two frames

- ★ A_1, A_5 dominant contributions
- **★** Full agreement in two frames for both Re and Im parts of A_1, A_5
- ★ A_3, A_4, A_8 zero at $\xi = 0$
- ★ A_2, A_6, A_7 suppressed (at least for this kinematic setup and $\xi = 0$)

H, E light-cone GPDs

Anti-quark region susceptible to systematic uncertainties

H, E light-cone GPDs

★ Anti-quark region susceptible to systematic uncertainties

M. Constantinou, CFNS - TMDs June 2023

Exploration of twist-3 PDFs & GPDs

PHYSICAL REVIEW D 102, 111501(R) (2020)

Rapid Communications

Editors' Suggestion

Insights on proton structure from lattice QCD: The twist-3 parton distribution function $g_T(x)$

Shohini Bhattacharya[®],¹ Krzysztof Cichy,² Martha Constantinou[®],¹ Andreas Metz,¹ Aurora Scapellato,² and Fernanda Steffens³

PHYSICAL REVIEW D 104, 114510 (2021)

Parton distribution functions beyond leading twist from lattice QCD: The $h_L(x)$ case

Shohini Bhattacharya^(D),¹ Krzysztof Cichy^(D),² Martha Constantinou^(D),¹ Andreas Metz,¹ Aurora Scapellato^(D),¹ and Fernanda Steffens³

arXiv:2306.05533v1 [hep-lat] 8 Jun 2023 Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya^{1,2}, Krzysztof Cichy³, Martha Constantinou¹, Jack Dodson¹, Andreas Metz¹, Aurora Scapellato¹, Fernanda Steffens⁴

h_L twist-3 PDF

 \star h_L decouples from usual DIS (chiral odd) - not trivial to extract

★ most elusive of the three twist-3 PDFs (e(x), $g_T(x)$, $h_L(x)$)

\star *h*_L may be accessed via:

- double-polarized Drell-Yan process

[R. Jaffe, PRL 67 (1991) 552-555; Y. Koike et al., PLB 668 (2008) 286, arXiv:0805.2289]

- di-hadron single spin asymmetries (CLAS)

[Gliske et al., PRD 90 (2014) 11, 114027, arXiv:1408.5721; A. Vossen, CIPANP 2018, arXiv: 1810.02435]

- single-inclusive particle production in proton-proton collisions [Y. Koike et al., PLB 759 (2016) 75, arXiv:1603.07908]

h_L twist-3 PDF

 \star h_L decouples from usual DIS (chiral odd) - not trivial to extract

★ most elusive of the three twist-3 PDFs (e(x), $g_T(x)$, $h_L(x)$)

\star *h*_L may be accessed via:

- double-polarized Drell-Yan process

[R. Jaffe, PRL 67 (1991) 552-555; Y. Koike et al., PLB 668 (2008) 286, arXiv:0805.2289]

- di-hadron single spin asymmetries (CLAS)

[Gliske et al., PRD 90 (2014) 11, 114027, arXiv:1408.5721; A. Vossen, CIPANP 2018, arXiv: 1810.02435]

- single-inclusive particle production in proton-proton collisions [Y. Koike et al., PLB 759 (2016) 75, arXiv:1603.07908]

★ Parametrization

[Meissner et al., JHEP 08 (2009) 056]

$$F^{[\sigma^{+-}\gamma_5]} = \bar{u}(p') \left(\gamma^+\gamma_5 \,\widetilde{H}'_2 + \frac{P^+\gamma_5}{M} \,\widetilde{E}'_2\right) \, u(p)$$

First lattice calculation of x-dependent GPDs

★ Twist-3 h_L as sizable as twist-2 h_1 $f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$

First lattice calculation of x-dependent GPDs

First lattice calculation of x-dependent GPDs

Role of up and down quarks:

M. Constantinou, CFNS - TMDs June 2023

 $f_i = f_i^{(0)} + \frac{f_i^{(1)}}{O} + \frac{f_i^{(2)}}{O^2} \cdots$

0.0000

15

-0.0025

Disconnected

contributions

12

Q

z/a

6

3

Burkhardt-Cottingham (quasi-h_L)

$$\int_{-1}^{1} dx \,\tilde{h}_L(x, P_3) = \int_{-1}^{1} dx \,\tilde{h}_1(x, P_3) = g_T$$

Burkhardt-Cottingham (quasi-h_L)

$$\begin{split} \int_{-1}^{1} dx \, \tilde{h}_L(x, P_3) &= \int_{-1}^{1} dx \, \tilde{h}_1(x, P_3) = g_T \\ & \\ & \\ & \\ \int dx \, \tilde{h}_L(x, 1.67 \, \text{GeV}) = 1.03(16) \,, \\ & \\ & \\ \int dx \, \tilde{h}_L(x, 1.67 \, \text{GeV}) = 0.94(10) \end{split}$$

Burkhardt-Cottingham (quasi-h_L)

$$\int_{-1}^{1} dx \,\tilde{h}_L(x, P_3) = \int_{-1}^{1} dx \,\tilde{h}_1(x, P_3) = g_T$$

Wandzura-Wilczek approximation

$$h_L(x) = h_L^{WW}(x) + h_L^{twist-3}(x) = 2x \int_x^1 dy \, \frac{h_1(y)}{y^2} + h_L^{twist-3}(x)$$

·

Burkhardt-Cottingham (quasi-h_L)

$$\int_{-1}^{1} dx \,\tilde{h}_L(x, P_3) = \int_{-1}^{1} dx \,\tilde{h}_1(x, P_3) = g_T$$

(16),
$$\int dx \,\tilde{h}_1(x, 1.67 \,\text{GeV}) = 0.94(10)$$

Wandzura-Wilczek approximation

$$h_L(x) = h_L^{WW}(x) + h_L^{twist-3}(x) = 2x \int_x^1 dy \, \frac{h_1(y)}{y^2} + h_L^{twist-3}(x)$$

J

M. Constantinou, CFNS - TMDs June 2023

Extension to twist-3 tensor GPDs

arXiv:2306.05533v1 [hep-lat] 8 Jun 2023 Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya^{1,2}, Krzysztof Cichy³, Martha Constantinou¹, Jack Dodson¹, Andreas Metz¹, Aurora Scapellato¹, Fernanda Steffens⁴

Extension to twist-3 tensor GPDs

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

★ Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Synergies: constraints & predictive power of lattice QCD

[JAM & ETMC, PRD 103 (2021) 016003]

transversity PDF

[JAM, PRD 106 (2022) 3, 034014]

[JAM/HadStruc, PRD105 (2022) 114051]

proton & neutron radius

[Atac et al., Nature Comm. 12, 1759 (2021)]

Summary

- ★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
- New proposal for Lorentz invariant decomposition has great advantages:
 significant reduction of computational cost
 - access to a broad range of t and ξ
- ★ Future calculations have the potential to transform the field of GPDs
- ★ Calculation of twist-3 distribution functions is promising
- ★ Synergy with phenomenology is an exciting prospect!

Summary

- ★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
- New proposal for Lorentz invariant decomposition has great advantages:
 significant reduction of computational cost
 - access to a broad range of $\,t$ and $\xi\,$
- ★ Future calculations have the potential to transform the field of GPDs
- \star Calculation of twist-3 distribution functions is promising
- ★ Synergy with phenomenology is an exciting prospect!

DOE Early Career Award (NP) Grant No. DE-SC0020405

