Disentangling Long and Short Distances in Momentum-Space TMDs

Zhiquan Sun (MIT)

Markus Ebert, Johannes Michel, lain Stewart
arXiv: 2201.07237
JHEP 07 (2022) 129

CFNS TMD workshop
June 21, 2023

TMD PDFs

- Factorization of Drell-Yan cross section:

$$
\frac{d \sigma}{d Q d Y d^{2} q_{T}}=H(Q, \mu) \sum_{i} \int d^{2} \vec{b}_{T} e^{i \vec{q}_{T} \cdot \vec{b}_{T}} f_{i}\left(x_{a}, b_{T}, \mu, \zeta_{a}\right) f_{i}\left(x_{b}, b_{T}, \mu, \zeta_{b}\right) \times\left[1+\mathcal{O}\left(\frac{q_{T}^{2}}{Q^{2}}\right)\right]
$$

- Most easily written in position space

$$
\mu=\text { Renormalization scale }
$$

$\zeta=$ Collins-Soper parameter
$\zeta_{a} \zeta_{b}=Q^{4}$

TMD PDFs

- Factorization of Drell-Yan cross section:

$$
\frac{d \sigma}{d Q d Y d^{2} q_{T}}=H(Q, \mu) \sum_{i} \int d^{2} \vec{b}_{T} e^{i \vec{q}_{T} \cdot \vec{b}_{T}} f_{i}\left(x_{a}, b_{T}, \mu, \zeta_{a}\right) f_{\bar{i}}\left(x_{b}, b_{T}, \mu, \zeta_{b}\right) \times\left[1+\mathcal{O}\left(\frac{q_{T}^{2}}{Q^{2}}\right)\right]
$$

- Measurements are done in momentum space!

(Non)perturbative TMD PDFs

- Challenging to use the nonperturbative info that lattice provides
- Modeling TMDPDFs with both perturbative and nonperturbative parts is usually done by introducing b^{*} :

$$
f_{i}\left(x, b_{T}, \mu, \zeta\right)=f_{\mathrm{pert}, i}\left(x, b^{*}\left(b_{T}\right), \mu, \zeta\right) \cdot f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right)
$$

- The perturbative part can be computed with an operator product expansion (OPE):

$$
\begin{aligned}
f_{\text {pert, } i}^{\mathrm{TMD}}\left(x, b_{T}, \mu, \zeta\right) & =\sum_{j} \int_{x}^{1} \frac{d z}{z} C_{i j}\left(\frac{x}{z}, b_{T}, \mu, \zeta\right) f_{j}^{\mathrm{coll}}(z, \mu) \\
& =f_{i}^{\text {coll }}(x, \mu)+\alpha_{s} C_{i j}^{(1)} \otimes f_{j}^{\mathrm{coll}}(x, \mu)+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Modeling TMD PDFs

- Modeling TMD PDFs with both perturbative and nonperturbative parts is usually done by introducing b^{*} :

$$
f_{i}\left(x, b_{T}, \mu, \zeta\right)=f_{\text {pert }, i}\left(x, b^{*}\left(b_{T}\right), \mu, \zeta\right) \cdot f_{\mathrm{NP}}\left(x, b_{T}, \zeta\right)
$$

- $b^{*}\left(b_{T}\right)$ shields the Landau pole
- $b_{T} \ll 1 / \Lambda_{\mathrm{QCD}}: b^{*}\left(b_{T}\right) \rightarrow b_{T}, f_{\mathrm{NP}} \rightarrow 1$
$f_{\text {pert }}$ dominates
- $b_{T} \gg 1 / \Lambda_{\mathrm{QCD}}: b^{*}\left(b_{T}\right) \rightarrow$ constant
f_{NP} dominates

Modeling TMDPDFs

- Different models of f_{NP} are used for fitting to data
- $b^{*}\left(b_{T}\right)$ shields the Landau pole and is coupled to f_{NP}

$$
\begin{aligned}
f_{\mathrm{TMD}}\left(x, b_{T}, \mu, \zeta\right) & =f_{\text {pert }}\left(x, b_{A}^{*}\left(b_{T}\right), \mu, \zeta\right) \cdot f_{\mathrm{NP}}^{A}\left(x, b_{T}, \zeta\right) \\
& =f_{\text {pert }}\left(x, b_{B}^{*}\left(b_{T}\right), \mu, \zeta\right) \cdot f_{\mathrm{NP}}^{B}\left(x, b_{T}, \zeta\right)
\end{aligned}
$$

$b_{A}^{*}\left(b_{T}\right) \neq b_{B}^{*}\left(b_{T}\right) \quad \Rightarrow \quad f_{\mathrm{NP}}^{A}\left(x, b_{T}\right)$ and $f_{\mathrm{NP}}^{B}\left(x, b_{T}\right)$ are not comparable!

- The perturbative and nonperturbative effects are mixed up!

Modeling TMDPDFs

- b^{*} prescriptions makes different f_{NP} not comparable
- For example, take the same $f_{\mathrm{NP}}\left(b_{T}\right)=e^{-\left(0.5 \mathrm{GeV} b_{T}\right)^{2}}$,
use either $b_{\mathrm{CS}}^{*}\left(b_{T}\right)$ or $b_{\text {Pavia }}^{*}\left(b_{T}\right)$:

- Goal: extract nonperturbative physics without b^{*} contamination

Momentum Space

- Measurements are in q_{T} space: Fourier transform

$$
\begin{aligned}
\frac{d \sigma}{d q_{T}} & =2 \pi q_{T} \int_{0}^{\infty} \frac{d^{2} \vec{b}_{T}}{(2 \pi)^{2}} e^{i q_{T} \cdot \vec{b}_{T}} \sigma\left(b_{T}\right) \\
q_{T} \text { spectrum } & =q_{T} \int_{0}^{\infty} d b_{T} b_{T} \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} e^{i q_{T} b_{T} \cos \phi} \sigma\left(b_{T}\right)=q_{T} \int_{0}^{\infty} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) \sigma\left(b_{T}\right)
\end{aligned}
$$

- For perturbative q_{T}, integral still includes nonperturbative b_{T} !
- Intuition: perturbative q_{T} should be dominated by perturbative $b_{T} \sim 1 / q_{T}$

Momentum Space

- Intuition: perturbative q_{T} should be dominated by perturbative b_{T}
- Goal: make this intuition manifest
- Solution: introducing $b_{T}^{\text {cut }}$ Can use perturbative OPE Nonperturbative physics

$$
S[f]\left(q_{T}\right) \equiv q_{T} \int_{0}^{\infty} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right)=S_{<}[f]\left(q_{T}\right)+S_{>}[f]\left(q_{T}\right)
$$

full spectrum

$$
\begin{aligned}
& S_{<}[f]\left(q_{T}\right) \equiv q_{T} \int_{0}^{b_{T}^{\text {cut }}} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right), \\
& S_{>}[f]\left(q_{T}\right) \equiv q_{T} \int_{b_{T}^{\text {cut }}}^{\infty} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right) \\
& 9 / 25
\end{aligned}
$$

Truncated Functionals

- Want to approximate $S[f]$ using perturbative $b_{T} \leq b_{T}^{\text {cut }}$
- Can use $S_{<}[f]$, but need to systematically account for $S_{>}[f]$

$$
S_{>}[f]\left(q_{T}, b_{T}^{\text {cut }}\right)=q_{T} \int_{b_{T}^{\text {cut }}}^{\infty} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right)
$$

Assumption:

a) $f\left(b_{T} \rightarrow \infty\right)<b_{T}^{-\rho}, \rho>\frac{1}{2}$
b) $f\left(b_{T}\right)$ differentiable at $b_{T}^{\text {cut }}$

$=-b_{T}^{\text {cut }} \underbrace{J_{1}\left(q_{T} b_{T}^{\text {cut }}\right.}) f\left(b_{T}^{\text {cut }}\right)-\int_{b_{T}^{\text {cut }}}^{\infty} d b_{T} b_{T} J_{1}\left(q_{T} b_{T}\right) \underbrace{f^{\prime}\left(b_{T}\right)}_{<b_{T}^{-\rho-1}}$
asymptotic form $\backslash q_{T} \gg 1 / b_{T}^{\text {cut }}>\Lambda_{\mathrm{QCD}}$
$=\sqrt{\frac{2 b_{T}^{\text {cut }}}{\pi q_{T}}} \cos \left(q_{T} b_{T}^{\text {cut }}+\frac{\pi}{4}\right) f\left(b_{T}^{\text {cut }}\right)+\mathcal{O}\left[\left(b_{T}^{\mathrm{cut}} q_{T}\right)^{-\frac{3}{2}}\right]$
$J_{0}(x \rightarrow \infty)=\sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\pi}{4}\right)+\mathcal{O}\left(x^{-\frac{3}{2}}\right)$
$J_{1}(x \rightarrow \infty)=-\sqrt{\frac{2}{\pi x}} \cos \left(x+\frac{\pi}{4}\right)+\mathcal{O}\left(x^{-\frac{3}{2}}\right)$

Truncated Functionals

- Define a systematic series to approximate $S[f]$ using $b_{T} \leq b_{T}^{\text {cut }}$

$$
S^{(0)}[f]\left(q_{T}\right) \equiv S_{<}[f]\left(q_{T}\right)=q_{T} \int_{0}^{b_{T}^{\mathrm{cut}}} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right)
$$

- Define $S^{(1)}[f]$ to include leading boundary contribution from $S_{>}[f]$

$$
S^{(1)}[f]\left(q_{T}\right) \equiv S^{(0)}[f]+\sqrt{\frac{2 b_{T}^{\text {cut }}}{\pi q_{T}}} \cos \left(q_{T} b_{T}^{\text {cut }}+\frac{\pi}{4}\right) f\left(b_{T}^{\text {cut }}\right) \longleftarrow \text { First correction! }
$$

$$
S[f]\left(q_{T}\right)=S^{(1)}[f]\left(q_{T}, b_{T}^{\mathrm{cut}}\right)+\frac{1}{q_{T}} \mathcal{O}\left[\left(b_{T}^{\mathrm{cut}} q_{T}\right)^{-\frac{1}{2}}\right]
$$

Truncated Functionals

- Systematically add on power corrections

$$
\text { so } S^{(n)}[f] \rightarrow S[f]
$$

$$
S^{(0)}[f]\left(q_{T}, b_{T}^{\text {cut }}\right)=\int_{0}^{b_{T}^{\text {ut }}} d b_{T} b_{T} J_{0}\left(q_{T} b_{T}\right) f\left(b_{T}\right)
$$

$$
S^{(1)}[f]\left(q_{T}, b_{T}^{\text {cut }}\right)=S^{(0)}[f]+\sqrt{\frac{2 b_{T}^{\text {cut }}}{\pi q_{T}}} f\left(b_{T}^{\text {cut }}\right) \cdot \cos \left(b_{T}^{\text {cut }} q_{T}+\frac{\pi}{4}\right)
$$

$S^{(2)}[f]\left(q_{T}, b_{T}^{\text {cut }}\right)=S^{(1)}[f]-\sqrt{\frac{2 b_{T}^{\text {cut }}}{\pi q_{T}}}\left(\frac{3 f\left(b_{T}^{\text {cut }}\right)}{8 b_{T}^{\text {cut }} q_{T}}+\frac{f^{\prime}\left(b_{T}^{\text {cut }}\right)}{q_{T}}\right) \cdot \cos \left(b_{T}^{\text {cut }} q_{T}-\frac{\pi}{4}\right)$
$S^{(3)}[f]\left(q_{T}, b_{T}^{\text {cut }}\right)=S^{(2)}[f]+\sqrt{\frac{2 b_{T}^{\text {cut }}}{\pi q_{T}}}\left(\frac{15 f\left(b_{T}^{\text {cut }}\right)}{128 b_{T}^{\text {cut }} q_{T}^{2}}-\frac{7 f^{\prime}\left(b_{T}^{\text {cut }}\right)}{8 b_{T}^{\text {cut }} q_{T}^{2}}-\frac{f^{\prime \prime}\left(b_{T}^{\text {cut }}\right)}{q_{T}^{2}}\right) \cdot \cos \left(b_{T}^{\text {cut }} q_{T}+\frac{\pi}{4}\right)$

$$
S[f]\left(q_{T}\right)=S^{(n)}[f]+\frac{1}{q_{T}} \mathcal{O}\left[\left(b_{T}^{\text {cut }} q_{T}\right)^{-n+\frac{1}{2}}\right]
$$

Power Correction to Functionals

- Toy function $f=\exp \left[-\lambda_{1} \ln ^{2}\left(b_{T} Q\right)\right] \exp \left[-\lambda_{2} b_{T}^{2}\right]$
- Errors of truncated functionals follow expected power law

$$
S[f]\left(q_{T}\right)=S^{(n)}[f]+\frac{1}{q_{T}} \mathcal{O}\left[\left(b_{T}^{\text {cut }} q_{T}\right)^{-n+\frac{1}{2}}\right]
$$

Perturbative Input

- Power expand toy function and use only "perturbative" input $f^{(0)}$

$$
f=\underbrace{\exp \left[-\lambda_{1} \ln ^{2}\left(b_{T} Q\right)\right]}_{f^{(0)}}\left(1-\lambda_{2} b_{T}^{2}+\mathcal{O}\left(b_{T}^{4}\right)\right)
$$

- "Errors" of truncated functionals identify missing quadratic term

Drell-Yan Cross Section

- Leading NP correction for cross section in b_{T} space:

$$
\sigma\left(b_{T}\right)=\sigma_{\left.\substack{(0)} b_{T}\right)}^{\sigma_{\substack{\text { Perturbative } \\ \text { computed to N3LL }}} \text { Intrinsic to TMDPDF From evolution }}
$$

- Pair with the $S[f]$ functionals to get momentum space spectrum

$$
\begin{array}{rlr}
\frac{\mathrm{d} \sigma}{\mathrm{~d} q_{T}}= & S^{(3)}\left[\sigma^{(0)}\left(b_{T}\right)\right]\left(q_{T}\right)+2 \bar{\Lambda}^{(2)} S^{(3)}\left[b_{T}^{2} \sigma^{(0)}\left(b_{T}\right)\right]\left(q_{T}\right)+\gamma_{\zeta, q}^{(2)} S^{(3)}\left[b_{T}^{2} L_{Q^{2}} \sigma^{(0)}\left(b_{T}\right)\right]\left(q_{T}\right) \\
& +\frac{1}{q_{T}} \mathcal{O}\left[\left(q_{T} b_{T}^{\text {utt }}\right)^{-\frac{5}{2}},\left(\frac{\Lambda_{Q C D}}{q_{T}}\right)^{4}\right] & \text { Linearity for the win! } \\
& \varlimsup_{\text {Truncating functional }} \text { Truncating OPE } &
\end{array}
$$

$\Rightarrow \begin{aligned} & \text { Useful for estimating uncertainties or } \\ & \text { putting model-independent constraints on } \gamma_{\zeta, q}^{(2)} \text { and } \bar{\Lambda}^{(2)}\end{aligned}$

Extracting NP Parameter

- Evaluating impact from each NP parameter individually
- Compare with SV and Pavia global fits
- Can compare with NP parameters from LQCD extraction

Cumulative Functionals

- What's the normalization of the TMDPDFs?

$$
\int d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(x, k_{T}, \mu, \zeta\right) \stackrel{?}{=} f^{\text {coll }}(x, \mu)
$$

- Renormalization breaks the naive expectation

$$
\begin{array}{r}
\mu \frac{d}{d \mu} \int d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(x, k_{T}, \mu, \zeta\right) \neq \mu \frac{d}{d \mu} f^{\mathrm{coll}}(x, \mu) \\
\text { renormalization says no :(}
\end{array}
$$

Cumulative Functionals

- Investigate $\int d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(x, k_{T}, \mu, \zeta\right) \stackrel{?}{=} f^{\text {coll }}(x, \mu)$
- Cumulative distribution with a UV cutoff:

$$
\begin{aligned}
\int_{\left|k_{T}\right| \leq k_{T}^{\text {cut }}} d^{2} \vec{k}_{T} f\left(k_{T}\right) & =\int_{\left|k_{T}\right| \leq k_{T}^{\text {cut }}} d^{2} \vec{k}_{T} \int \frac{d^{2} b_{T}}{(2 \pi)^{2}} e^{+i \vec{k}_{T} \cdot \vec{b}_{T}} f\left(b_{T}\right) \\
& =\underbrace{\int^{k_{T}^{\text {cut }}} d k_{T} k_{T} \int_{0}^{\infty} d b_{T} b_{T} J_{0}\left(b_{T} k_{T}\right) f\left(b_{T}\right)}_{K[f]\left(k_{T}^{\text {cut }}\right)} \\
& =\underbrace{k_{T}^{\text {cut }}}_{T} \int_{0}^{\infty} d b_{T} J_{1}\left(b_{T} k_{T}^{\text {cut }}\right) f\left(b_{T}\right)
\end{aligned}
$$

- Approximate using perturbative region:

$$
K^{(0)}[f]\left(k_{T}^{\mathrm{cut}}, b_{T}^{\mathrm{cut}}\right)=k_{T}^{\mathrm{cut}} \int_{0}^{b_{T}^{\mathrm{cut}}} d b_{T} J_{1}\left(b_{T} k_{T}^{\mathrm{cut}}\right) f\left(b_{T}\right)
$$

Cumulative Functionals

- Systematically add on power corrections so $K^{(n)}[f] \rightarrow K[f]$

$$
\begin{aligned}
& K^{(0)}[f]\left(k_{T}^{\text {cut }}, b_{T}^{\text {cut }}\right)=k_{T}^{\text {cut }} \int_{0}^{b_{T}^{\text {cut }}} d b_{T} J_{1}\left(b_{T} k_{T}^{\text {cut }}\right) f\left(b_{T}\right) \\
& K^{(1)}[f]\left(k_{T}^{\text {cut }}, b_{T}^{\text {cut }}\right)=K^{(0)}[f]+f\left(b_{T}^{\text {cut }}\right) \cdot \frac{\cos \left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi}{2}}\left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}\right)^{1 / 2}} \\
& K^{(2)}[f]\left(k_{T}^{\text {cut }}, b_{T}^{\text {cut }}\right)=K^{(1)}[f]-\left(\frac{f\left(b_{T}^{\text {cut }}\right)}{\left.8 b_{T}^{\text {cut } t} k_{T}^{\text {cut }}-\frac{f^{\prime}\left(b_{T}^{\text {cut }}\right)}{k_{T}^{\text {cut }}}\right) \cdot \frac{\cos \left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}+\frac{\pi}{4}\right)}{\sqrt{\frac{\pi}{2}}\left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}\right)^{1 / 2}}} \begin{array}{l}
K^{(3)}[f]\left(k_{T}^{\text {cut }}, b_{T}^{\text {cut }}\right)=K^{(2)}[f]-\left(\frac{9 f\left(b_{T}^{\text {cut }}\right)}{128 b_{T}^{\text {cut } 2} k_{T}^{\text {cut }} 2}-\frac{5 f^{\prime}\left(b_{T}^{\text {cut }}\right)}{8 b_{T}^{\text {cut }} k_{T}^{\text {cut }} 2}+\frac{f^{\prime \prime}\left(b_{T}^{\text {cut }}\right)}{k_{T}^{\text {cut }} 2}\right) \cdot \frac{\cos \left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}-\frac{\pi}{4}\right)}{\sqrt{\frac{\pi}{2}\left(b_{T}^{\text {cut }} k_{T}^{\text {cut }}\right)^{1 / 2}}}
\end{array} .\right.
\end{aligned}
$$

$$
K[f]\left(k_{T}^{\mathrm{cut}}\right)=K^{(n)}[f]\left(k_{T}^{\mathrm{cut}}, b_{T}^{\mathrm{cut}}\right)+\mathcal{O}\left[\left(b_{T}^{\mathrm{cut}} k_{T}^{\mathrm{cut}}\right)^{-n-\frac{1}{2}}\right]
$$

Power Correction of $K^{(n)}$

- Same toy function $\quad f=\exp \left[-\lambda_{1} \ln ^{2}\left(b_{T} Q\right)\right] \exp \left[-\lambda_{2} b_{T}^{2}\right]$
- Errors of truncated functionals follow expected power law

$$
K[f]\left(k_{T}^{\mathrm{cut}}\right)=K^{(n)}[f]\left(k_{T}^{\mathrm{cut}}, b_{T}^{\mathrm{cut}}\right)+\mathcal{O}\left[\left(b_{T}^{\mathrm{cut}} k_{T}^{\mathrm{cut}}\right)^{-n-\frac{1}{2}}\right]
$$

Perturbative Baseline

- Leading NP correction for TMDPDF:

$$
L_{\zeta}=\ln \left(b_{T}^{2} \zeta / b_{0}^{2}\right)
$$

- Pair with the $K[f]$ functionals to get the TMDPDF cumulant

> Model-independent,
> fully perturbative

$$
\begin{aligned}
& \int_{T}^{k_{T}^{\text {cut }}} d^{2} \vec{k}_{T} f_{i}\left(k_{T}\right)= K^{(3)}\left[f_{i}^{(0)}\right]\left(k_{T}^{\text {cut }}\right)+\Lambda_{i}^{(2)} K^{(3)}\left[b_{T}^{2} f_{i}^{(0)}\right]+\frac{1}{2} \gamma_{\zeta, i}^{(2)} K^{(3)}\left[b_{T}^{2} L_{\zeta} f_{i}^{(0)}\right] \\
&+\mathcal{O}\left[\left(k_{T}^{\text {cut }} b_{T}^{\text {cut }}\right)^{-\frac{7}{2}},\left(\frac{\Lambda_{\mathrm{QCD}}}{\left.\left.k_{T}^{\mathrm{cut}}\right)^{4}\right]}\right.\right. \\
& \text { Truncating functional } \quad \text { Truncating OPE }
\end{aligned}
$$

Cumulant of TMDPDFs

- Approximate the cumulant using $K^{(3)}\left[f_{\mathrm{TMD}}^{(0)}\right]$ and normalize to $f^{\text {coll }}$
- Deviation is small! $\int^{k_{T}^{\text {ut }}} d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(x, k_{T}, \mu=\sqrt{\zeta}=k_{T}^{\text {cut }}\right)=f^{\text {coll }}\left(x, \mu=k_{T}^{\text {cut }}\right)$ YES!

- Model-independent confirmation of previous results at $\mu=k_{T}^{\text {cut }}$
Bacchetta \& Prokudin (1303.2129)
- Central value consistent with intuitive result within percents
- $\Delta_{\text {res }}$ is perturbative uncertainties estimated by scale variations

Cumulant of TMDPDFs

- Deviation is small! $\int^{k_{T}^{\text {ut }}} d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(x, k_{T}, \mu=\sqrt{\zeta}=k_{T}^{\text {cut }}\right)=f^{\text {coll }}\left(x, \mu=k_{T}^{\text {cut }}\right)$ YES!
- NP uncertainty much smaller than perturbative uncertainty

Impact of Evolution Effects

$$
\begin{gathered}
\int^{k_{T}^{\text {cut }}} \mathrm{d}^{2} \vec{k}_{T} f_{d}\left(x, \vec{k}_{T}, \mu, \zeta\right) / f_{d}(x, \mu)-1 \\
x=0.01, k_{T}^{\text {cut }}=10 \mathrm{GeV}
\end{gathered}
$$

- Intuitive expectation is robust in the vicinity of $\mu=\sqrt{\zeta}=k_{T}^{\text {cut }}$
- For $\mu=k_{T}^{\mathrm{cut}}$, the ζ evolution is negligible*
- Sizable corrections from evolution away from these regions, due to the cusp anomalous dimension
- Evolution effect matters, but at the natural scale $\mu=k_{T}^{\text {cut }}$ the intuition is valid

$$
\int_{T}^{k_{T}^{\mathrm{cut}}} d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(x, k_{T}, \mu=k_{T}^{\mathrm{cut}}, \zeta\right)=f^{\mathrm{coll}}\left(x, \mu=k_{T}^{\mathrm{cut}}\right)
$$

Conclusions

- Disentangling perturbative and nonperturbative physics in TMD PDFs helps make use of lattice data
- Truncated functionals provide a model-independent and systematically improvable method to map perturbative results from position to momentum space
- Developed model-independent method to assess the impact of non-perturbative effects (OPE coefficients) in momentum space, can be compared to lattice extraction
- Demonstrated that integrating the unpolarized TMD PDF over [$0, k_{T}^{\text {cut }}$] gives the collinear PDF to the percent level (when renormalization scale $\mu=k_{T}^{\text {cut }}$)

Back-up Slides

Cumulant of TMDPDFs

- Deviation is small! $\int^{k_{T}^{\text {ut }}} d^{2} \vec{k}_{T} f^{\mathrm{TMD}}\left(x, k_{T}, \mu=\sqrt{\zeta}=k_{T}^{\text {cut }}\right)=f^{\text {coll }}\left(x, \mu=k_{T}^{\text {cut }}\right)$ YES!
- Test the observation as a function of x and keep $k_{T}^{\text {cut }}$ fixed

- Central value can differ from zero by 2\%
- Small deviation supported by modelbased global fits
Scimemi \& Vladimirov (1912.06532)
Bacchetta et al: 1912.07550

$$
\begin{aligned}
& \text { Other Light Quarks } \\
& \int_{\mathrm{d}^{2}}^{\boldsymbol{k}_{\boldsymbol{k}}^{\text {cut }}} \overrightarrow{\boldsymbol{k}}_{T} f_{u}\left(x, \overrightarrow{\boldsymbol{k}}_{T}, \mu, \zeta\right) / f_{u}(x, \mu)-1
\end{aligned}
$$

Other Light Quarks

$$
\begin{gathered}
\int^{k_{T}^{\text {cut }}} \mathrm{d}^{2} \vec{k}_{T} f_{\bar{u}}\left(x, \vec{k}_{T}, \mu, \zeta\right) / f_{\bar{u}}(x, \mu)-1 \\
x=0.01, k_{T}^{\text {cut }}=10 \mathrm{GeV}
\end{gathered}
$$

Other Light Quarks

$$
\begin{gathered}
\int_{\mathrm{d}^{2}}^{k_{T}^{\text {cut }}} \vec{k}_{T} f_{\bar{d}}\left(x, \vec{k}_{T}, \mu, \zeta\right) / f_{\bar{d}}(x, \mu)-1 \\
x=0.01, k_{T}^{\text {cut }}=10 \mathrm{GeV}
\end{gathered}
$$

Other Light Quarks

$$
\begin{gathered}
\int_{\mathrm{d}^{2}}^{k_{T}^{\text {cut }}} \vec{k}_{T} f_{s}\left(x, \vec{k}_{T}, \mu, \zeta\right) / f_{s}(x, \mu)-1 \\
x=0.01, k_{T}^{\text {cut }}=10 \mathrm{GeV}
\end{gathered}
$$

