TMDs: Towards a Synergy between Lattice QCD and Global Analyses June 21, 2023

Global extraction of Transverse Momentum Distributions

Chiara Bissolotti Argonne National Laboratory

on behalf of the MAP Collaboration

HADRONIC STRUCTURE AND QUANTUM CHROMODYNAMICS

Istituto Nazionale di Fisica Nucleare

Extraction of unpolarized quark TMDs What's new?

JHEP 10 (2022) 127

Normalization of SIDIS multiplicities beyond NLL

Extremely good description: $\chi^2 N_{data} = 1.06$

2031 data points

$$F_{UU}^{1}(x_{A}, x_{B}, \boldsymbol{q}_{T}^{2}, Q^{2})$$

$$= \sum_{a} \mathcal{H}_{UU}^{1a}(Q^{2}, \mu^{2}) \int d^{2}\boldsymbol{k}_{\perp A} d^{2}\boldsymbol{k}_{\perp B} f_{1}^{a}(x_{A}, \boldsymbol{k}_{\perp A}^{2}; \mu^{2}) f_{1}^{\bar{a}}(x_{B}, \boldsymbol{k}_{\perp B}^{2}; \mu^{2}) \delta^{(2)}(\boldsymbol{k}_{\perp A} - \boldsymbol{q}_{T} + \boldsymbol{k}_{\perp B})$$

$$+ Y_{UU}^{1}(Q^{2}, \boldsymbol{q}_{T}^{2}) + \mathcal{O}(M^{2}/Q^{2})$$

SDS **Semi-Inclusive Deep Inelastic Scattering** $\ell(l) + N(p) \to \ell(l') + h(P_h) + X$

TMD factorization $P_{hT}^2 \ll Q^2$

 $+Y_{UU,T}(Q^2, \mathbf{P}_{hT}^2) + \mathcal{O}(M^2/Q^2)$

Bacchetta, Diehl, et al., JHEP 02 (2007)

SDS **Semi-Inclusive Deep Inelastic Scattering** $\ell(l) + N(p) \to \ell(l') + h(P_h) + X$

TMD factorization $P_{hT}^2 \ll Q^2$

Bacchetta, Diehl, et al., JHEP 02 (2007)

SDS **Semi-Inclusive Deep Inelastic Scattering** $\ell(l) + N(p) \to \ell(l') + h(P_h) + X$

TMD factorization $P_{hT}^2 \ll Q^2$

Bacchetta, Diehl, et al., JHEP 02 (2007)

W term dominates in the region where $q_T \ll Q$ Ş Y term not included in the MAP analyses

unpolarized Transverse Momentum Dependent Parton Distribution Function

$f_1^q(x,b;\mu,\zeta) = \sum_j \left(C_j \otimes f^j \right) (x,b_*;\mu_b) e^{R(b_*;\mu_b,\mu)} f_{\mathrm{NP}}(x,b)$

unpolarized Transverse Momentum Dependent Parton Distribution Function

TMD PDFs

$f_1^q(x,b;\mu,\zeta) = \sum_j \left(C_j \otimes f^j \right) (x,b_*;\mu_b) e^{R(b_*;\mu_b,\mu)} f_{\mathrm{NP}}(x,b)$

------ collinear PDFs

unpolarized Transverse Momentum Dependent Parton Distribution Function TMD PDFs matching to the collinear PDFs collinear region $\otimes f^j)(x,b_*;\mu_b)e^{R(b_*;\mu_b,\mu)}f_{\mathrm{NP}}(x,b)$ J perturbative perturbative expansion evolution

$$f_1^q(x,b;\mu,\zeta) = \sum_{i} \left(C_j \otimes \right)$$

in $\alpha_{s}(\mu)$

MD PDFS ------ collinear PDFs $f_1^q(x,b;\mu,\zeta) = \sum_i \left(C_j \otimes f^j\right)(x,b_*;\mu_b) e^{R(b_*;\mu_b,\mu)} f_{\mathrm{NP}}(x,b)$ perturbative _____ evolution

state of the art: N3LL next-to-next-to-next leading log

Perturbative accuracy: N³LL⁻ Orders in powers of α_s

Accuracy	H and C	K and γ_F	γ κ	PDF and α _s evol.
LL	0		1	
NLL	0	1	2	LO
NLĽ	1	1	2	NLO
NNLL	1	2	3	NLO
NNLĽ	2	2	3	NNLO
N ³ LL ⁻	2	3	4	NLO (FF only)
N ³ LL	2	3	4	NNLO
N ³ LĽ	3	3	4	N ³ LO

Perturbative accuracy: N³LL⁻ Orders in powers of α_s

Hard factor and Ingredien matching coefficient Sudak		Its in perturbative Tov form factor		
Accuracy	H and C	K and y _F	Ϋ́κ	PDF and α _s evol.
LL	0		1	
NLL	0	1	2	LO
NLĽ	1	1	2	NLO
NNLL	1	2	3	NLO
NNLĽ	2	2	3	NNLO
N ³ LL ⁻	2	3	4	NLO (FF only)
N ³ LL	2	3	4	NNLO
N ³ LĽ	3	3	4	N ³ LO

Normalization of SIDIS multiplicities

High-Energy Drell-Yan beyond NLL

description considerably worsens at higher orders

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550 7

Normalization of SIDIS multiplicities Introduction of a normalization prefactor

SIDIS multiplicity

 $M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \left/ \frac{d\sigma}{dx dQ} \right|$

Khalek, Bertone, Nocera, arXiv: 2105.08725

Normalization of SIDIS multiplicities **Introduction of a normalization prefactor**

SIDIS multiplicity

$$M(x, z, P_{hT}, Q) = \frac{d\sigma}{dx dQ dz dP_{hT}} \bigg/ \frac{d\sigma}{dx dQ}$$

 $w(x, z, Q) = \frac{d\sigma}{dx dQ dz} \bigg/ \int dP_{hT} \frac{d\sigma}{dx dQ dz dP_{hT}}$

computed a priori, before the fit

Depends on the collinear PDFs

independent of the fitting parameters

Global analys	sis of D	Y and SI
Cuts on kinematics		10
$\langle Q \rangle > 1.3 \mathrm{GeV}$		10
$0.2 < \langle z \rangle < 0.7$		
DY		
$q_T _{\max} = 0.2Q$		10
SIDIS		10
$P_{hT} _{\max} = \min[\min]$	[0.2Q, 0.52]	zQ] + 0.3 Ge
	Tota	I number (

PHENIX \mathbf{CDF} $\mathbf{D0}$

10

DIS data sets

Non-perturbative part of TMDs TMD PDF $f_{1NP}(x, b_T^2) \propto \text{F.T. of } \left(e^{-\frac{k_\perp^2}{g_{1A}}} + \lambda_B k_\perp^2 e^{-\frac{k_\perp^2}{g_{1B}}} + \lambda_C e^{-\frac{k_\perp^2}{g_{1C}}} \right)$ TMD FF $D_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{P_{\perp}^2}{g_{3A}}} + \lambda_{FB} k_{\perp}^2 e^{-\frac{P_{\perp}^2}{g_{3B}}} \right)$

NP evolution $g_K(b_T^2) = -g_2^2 \frac{b_T^2}{\Lambda}$

$$g_1(x) = N_1 \ \frac{(1-x)}{(1-\hat{x})}$$

$$g_3(z) = N_3 \frac{(z^{\beta} + \delta)(1 - \delta)}{(\hat{z}^{\beta} + \delta)(1 - \delta)}$$

evolution $g_K(b_T^2) = -g_2^2 \frac{b_T^2}{\Lambda}$

$$g_1(x) = N_1 \ \frac{(1-x)}{(1-\hat{x})}$$

$$g_3(z) = N_3 \frac{(z^{\beta} + \delta)(1 - \delta)(1 - \delta)}{(\hat{z}^{\beta} + \delta)(1 - \delta)}$$

Comparison with data **Drell-Yan**

Data set	$N_{ m dat}$	$\chi_D^2/N_{\rm dat}$	$\chi_{\lambda}^2/N_{\rm dat}$
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

Comparison with data **Drell-Yan**

Good agreement DY low energy

Data set	$N_{ m dat}$	$\chi_D^2/N_{\rm dat}$	$\chi_{\lambda}^2/N_{\rm dat}$
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

Comparison with data Drell-Yan

CMS

 ${}^6_{|q_T|[{
m GeV}]}$

- 4

 $10\quad 12\quad 14$

Comparison with data

	_
0.055	-

Data set	N_{dat}	$\chi_D^2/N_{\rm dat}$	$\chi_{\lambda}^2/N_{\rm da}$
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

Data set	$N_{ m dat}$	$\chi_D^2/N_{\rm dat}$	$\chi_\lambda^2/N_{ m c}$
DY collider total	251	1.86	0.2
DY fixed-target total	233	0.85	0.4
SIDIS total	1547	0.59	0.28
Total	2031	0.77	0.29

Comparison with data

Comparison with data

Fit results - TMDs

TMD PDFs

TMD PDFs

TMD FFs

Collins-Soper Kernel **Comparison with lattice**

TMD comparisons in bT space

Ş in the shaded grey regions LaMET predictions are not reliable

peak positions are not exactly the same

Global analysis of Drell-Yan and Semi-Inclusive DIS data sets Ş

8

Normalization of SIDIS multiplicities beyond NLL Ş

Number of parameters: 21

Source of W term suppression Hard factor

 $\mathcal{H}_{ab}^{\rm SIDIS}(Q,Q) = e_a^2 \delta_{ab}$

$$\left(1+\frac{\alpha_S}{4\pi}C_F\left(-16+\frac{\pi^2}{3}\right)\right)$$

Source of W term suppression Hard factor

$\mathcal{H}_{ab}^{\text{SIDIS}}(Q,Q) = e_a^2 \delta_{ab}$

introducing $\mathcal{O}(\alpha_s)$ terms

reduces the structure function to about 60% of its original value.

$$\left(1 + \frac{\alpha_S}{4\pi}C_F\left(-16 + \frac{\pi^2}{3}\right)\right)$$

$$\left(1 + \frac{\alpha_S}{4\pi}C_F\left(-16 + \frac{\pi^2}{3}\right)\right)$$

Normalization of SIDIS multiplicities

The discrepancy amounts to an almost **Constant factor**

$$\frac{1}{2}dz\Big|_{O(\alpha_S)}$$

Fit results: correlation matrix 250 Montecarlo replicas

SIDIS cut for data selection **COMPASS multiplicities**

$1.3 < Q < 1.73 \,\,{\rm GeV}$

0.3 < z < 0.4 (offset = 0)0.4 < z < 0.6 (offset = 0)0.6 < z < 0.8 (offset = 0)

max

Cut qT/Q for SIDIS dataset

