

WORKSHOP ON TMDs: Towards a Synergy between Lattice QCD and Global Analyses

Umberto D'Alesio

in coll. with L.Gamberg, F. Murgia & M. Zaccheddu JHEP 12 (2022) 074 arXiv:2306.xxxxx

Motivations

$\Box e^+e^- \rightarrow h_1 h_2 + X:$

TMD formulation and fit of transverse Λ polarization Belle data

- Extraction of the polarizing FF
- \checkmark SU(2) symmetry and role of charm contribution

□ SIDIS

- TMD formalism
- Predictions for EIC
- Concluding remarks

MOTIVATIONS AND MORE

- Transverse Λ polarization in *unpolarized pp* collisions: [Bunce *et al.* 1976] sizeable, rising with x_F , p_T plateau...still challenging
- First attempt within a TMD scheme: good description ... no formal theory behind
- Breakthrough: Belle e^+e^- data
- e⁺e⁻ collisions:

2h, TMD fact.

lh: new TMD scheme?

[Guan *et al.* (Belle Coll.) 2019]

[Anselmino, Boer, UD, Murgia 2001]

[Collins 2011; Echevarria, Idilbi, Scimemi 2012]

[Kang, Shao, Zhao 2020; Boglione, Simonelli 2021, 2022]

First analysis of Belle data: extraction of the polarizing FF (fixed scale)

	2h and 2h+1h fits 2h fit	[UD, Murgia, Zaccheddu 2020] [Callos, Kang, Terry 2020]
 Analysis w/ CSS scheme 	[Li, Wang, Yang, Lu 2021; Gamber UD, Gan	g, Kang, Shao, Terry, Zhao 2021; nberg, Murgia, Zaccheddu 2022]
• <i>SU(2)</i> issue:	[Chen, Liang, Pan, Song, Wei 202	21; Chen, Liang, Song, Wei 2022]

OPEN ISSUES (THE LAST ANALYSIS) [UD, Gamberg, Murgia, Zaccheddu 2022]

LOD, Damberg, murgia, Baccheuu

Tension between 2h & 1h data description

• Free three-flavor (u, d, s) fit \implies strong SU(2) violation $(d \cong -u)$

HERE, focus on: *SU*(2) symmetry and role of charm

 $\frac{d\sigma^{e^+e^- \to h_1(S_1)h_2 X}}{2dy \, dz_{h_1} dz_{h_2} d^2 q_T} = \sigma_0^{e^+e^-} \left[F_{UU} - |S_{1T}| \sin(\phi_1 - \phi_{S_1}) F_{TU}^{\sin(\phi_1 - \phi_{S_1})} + \cdots \right]$ $F_{UU} = z_{p_1}^2 z_{p_2}^2 \mathcal{H}^{(e^+e^-)}(Q) \mathcal{F}[D_1 \bar{D}_1] \qquad \mathcal{H}^{(e^+e^-)}(Q)|_{\text{LO}} = 1$ $F_{TU}^{\sin(\phi_1 - \phi_{S_1})} = z_{p_1}^2 z_{p_2}^2 \mathcal{H}^{(e^+e^-)}(Q) \mathcal{F}\left[\frac{\hat{h} \cdot k_T}{M_1} D_{1T}^{\perp} \bar{D}_1\right]$ [Boer, Jakob, Mulders 1997; Pitonyak, Schlegel, Metz 2014; UD, Murgia, Zaccheddu 2021]

U. D'Alesio University and INFN Cagliari TMDs: Lattice & Global Analyses, June 21, 2023

$$e^+e^- \to h_1(P_1) h_2(P_2) + X$$

Convolution in k_T space

$$\mathcal{F}[\omega D\bar{D}] = \sum_{q} e_q^2 \int d^2 \boldsymbol{k}_T d^2 \boldsymbol{p}_T \,\delta^{(2)}(\boldsymbol{k}_T + \boldsymbol{p}_T - \boldsymbol{q}_T) \,\omega(\boldsymbol{k}_T, \boldsymbol{p}_T) D(z_1, \boldsymbol{k}_\perp) \bar{D}(z_2, \boldsymbol{p}_\perp)$$

CSS approach...move to b_T space

$$F_{UU} = z_{p_1}^2 z_{p_2}^2 \mathcal{B}_0 \Big[\widetilde{D}_1 \widetilde{\bar{D}}_1 \Big] = z_{p_1}^2 z_{p_2}^2 \sum_q e_q^2 \int \frac{db_T}{2\pi} b_T J_0(b_T q_T) \widetilde{D}_1(z_1, b_T) \widetilde{\bar{D}}_1(z_2, b_T)$$

$$\begin{split} F_{TU}^{\sin(\phi_1-\phi_{S_1})} &= M_1 z_{p_1}^2 z_{p_2}^2 \mathcal{B}_1 \Big[\widetilde{D}_{1T}^{\perp(1)} \widetilde{\overline{D}}_1 \Big] & \text{Ist moment of the pFF} \\ &= M_1 z_{p_1}^2 z_{p_2}^2 \sum_q e_q^2 \int \frac{db_T}{2\pi} b_T^2 J_1(b_T q_T) \widetilde{D}_{1T}^{\perp(1)}(z_1, b_T) \widetilde{\overline{D}}_1(z_2, b_T) \\ \Delta^N D_{h^{\uparrow}/q}(z, k_{\perp}) &= \frac{k_{\perp}}{zM_h} D_{1T}^{\perp}(z, k_{\perp}) & \text{polarizing FF} \\ &\text{U. D'Alesio University and INFN Cagliari} & \text{TMDs: Lattice & Global Analyses, June 21, 2023} \end{split}$$

$$e^+e^- \to h_1(P_1) h_2(P_2) + X$$

Polarization along n (\perp to the production plane)

$$P_n^{h_1}(z_{h_1}, z_{h_2}) = \frac{M_1 \int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_1 \left[\widetilde{D}_{1T}^{\perp(1)} \widetilde{\overline{D}}_1 \right]}{\int dq_T \ q_T \ d\phi_1 \ \mathcal{B}_0 \left[\widetilde{D}_1 \widetilde{\overline{D}}_1 \right]} \qquad q_T < 0.27 \ Q$$
TMD fact.

Denominator (known)

(small- b_T matching onto) collinear FFs

$$\mathcal{B}_{0}\left[\tilde{D}_{1}\tilde{\bar{D}}_{1}\right] = \frac{1}{z_{1}^{2}z_{2}^{2}} \sum_{q} e_{q}^{2} \int \frac{db_{T}}{2\pi} b_{T} J_{0}(b_{T} q_{T}) d_{h_{1}/q}(z_{1};\bar{\mu}_{b}) d_{h_{2}/\bar{q}}(z_{2};\bar{\mu}_{b})$$

$$\times M_{D_{1}}(b_{c}(b_{T}), z_{1}) M_{D_{2}}(b_{c}(b_{T}), z_{2}) e_{M_{1}}^{Q_{K}(b_{c}(b_{T});b_{m}, x)} \ln\left(\frac{Q^{2}z_{1}z_{2}}{M_{1}M_{2}}\right) - S_{\text{pert}}(b_{*};\bar{\mu}_{b})$$

$$Nonpert. \text{ funct.s} \qquad Nonpert. \qquad Perturbative Sudakov factor$$

$$\begin{split} S_{\text{pert}}(b_*; \bar{\mu}_b) &= -\tilde{K}(b_*; \bar{\mu}_b) \ln \frac{Q^2}{\bar{\mu}_b^2} - \int_{\bar{\mu}_b}^Q \frac{d\mu'}{\mu'} \begin{bmatrix} 2\gamma_D(g(\mu'); 1) - \gamma_K(g(\mu')) \ln \frac{Q^2}{\mu'^2} \end{bmatrix} \\ \bar{\mu}_b &= \frac{C_1}{b_*(b_T)} & \text{Perturb.} & \text{RG} & \text{cusp} \\ \text{CS Kernel} & \text{anomalous dimensions} \\ C_1 &= 2e^{-\gamma_E} \end{split}$$

Nonperturbative functions from Bacchetta, Delcarro, Pisano, Radici, Signori 2017

$$M_{D}(b_{T},z) = \frac{g_{3} e^{-b_{T}^{2} \frac{g_{3}}{4z^{2}}} + \frac{\lambda_{F}}{z^{2}} g_{4}^{2} \left(1 - g_{4} \frac{b_{T}^{2}}{4z^{2}}\right) e^{-b_{T}^{2} \frac{g_{4}}{4z^{2}}}}{g_{3} + \frac{\lambda_{F}}{z^{2}} g_{4}^{2}}$$

$$b_{*} \equiv b_{*}(b_{T}; b_{\min}, b_{\max}) = b_{\max} \left(\frac{1 - e^{-b_{T}^{4}/b_{\max}^{4}}}{1 - e^{-b_{T}^{4}/b_{\min}^{4}}}\right)^{1/4} \qquad b_{*}(b_{c}(b_{T})) \rightarrow \begin{cases} b_{\min} & b_{T} \ll b_{\min} \\ b_{T} & b_{\min} \ll b_{T} \ll b_{\max} \\ b_{\max} & b_{T} \gg b_{\max} \end{cases}$$

$$b_{\min} = 2e^{-\gamma_{E}}/Q \text{ and } b_{\max} = 0.6 \text{ GeV}^{-1} \qquad g_{K}(b_{T}; b_{\max}) = \frac{g_{2}b_{T}^{2}}{2}; \quad g_{2} = 0.13 \text{ GeV}^{2}$$

Coll. FF sets: for π/K de Florian. Sassot, Stratmann 2007; for Λ Albino, Kniehl, Kramer 2008

U. D'Alesio University and INFN Cagliari TMDs: Lattice & Global Analyses, June 21, 2023

Numerator of P_n

$$\mathcal{B}_{1}\Big[\tilde{D}_{1T}^{\perp(1)}\tilde{\bar{D}}_{1}\Big] = \frac{1}{z_{1}^{2}z_{2}^{2}} \sum_{q} e_{q}^{2} \int \frac{db_{T}}{(2\pi)} b_{T}^{2} J_{1}(b_{T} q_{T}) D_{1T}^{\perp(1)}(z_{1};\bar{\mu}_{b}) d_{h_{2}/\bar{q}}(z_{2};\bar{\mu}_{b}) \\ \times \left(M_{D_{1}}^{\perp}(b_{c}(b_{T}),z_{1}) M_{D_{2}}(b_{c}(b_{T}),z_{2}) e^{-g_{K}(b_{c}(b_{T});b_{\max}) \ln\left(\frac{Q^{2}z_{1}z_{2}}{M_{1}M_{2}}\right) - S_{\mathrm{pert}}(b_{*};\bar{\mu}_{b})}\right)$$

• Polarizing FF first moment

$$q = u, d, s, \overline{u}, \overline{d}, \overline{s}$$

$$\mathcal{N}_{q}^{\perp(1)}(z;\mu_{b}) = \mathcal{N}_{q}^{p}(z) \, d_{\Lambda/q}(z;\mu_{b})$$
$$\mathcal{N}_{q}^{p}(z) = N_{q} z^{a_{q}} (1-z)^{b_{q}} \frac{(a_{q}+b_{q})^{(a_{q}+b_{q})}}{a_{q}^{a_{q}} b_{q}^{b_{q}}}$$

• nonperturbative pFF

$$(M_{D,\Lambda}^{\perp}(b_T, z)) = \exp\left(-\frac{\langle p_{\perp}^2 \rangle_{\rm p} b_T^2}{4z_p^2}\right)$$

FIT OF BELLE DATA [NLL]

• Data selection: $\Lambda + \pi/K$: $z_{\pi,K}$ [0.5-0.9] bin excluded \rightarrow 96 data points (128)

	χ^2_{dof}	χ^2_{dof}
Scenarios considered:	96 pts	128 pts
 Only light quarks & No SU(2) sym. pFFs for u, d, s, sea; [8 par] 	1.17	1.90
 Inclusion of charm in unpol. xsec, & No SU(2) sym. pFFs for u, d, s, sea; [9 par] 	1.26	1.62
3. Inclusion of charm in unpol. xsec, $SU(2)$ sym. pFFs for $d = u$, $\overline{d} = \overline{u}$, s, \overline{s} [9 par]	1.36	1.64

FIRST MOMENTS: SC 1, 2 NO *SU(2)* SYMM.

- different magnitudes, Sc 2 bigger in size: charm contribution;
- u pFF positive; d pFF negative

STRONG SU(2) violation

- Sc 1 and 2 compatible, except for strange
- Similar size for the Gaussian width.

FIRST MOMENTS: SC 3 WITH SU(2) SYMM.

- *u*, *d* pFFs **positive**; all others pFFs negative
- sea contribution larger in size w.r.t. Sc. 1 & 2

DATA DESCRIPTION

[•] Good agreement for $\Lambda \pi^{\pm}$, $\overline{(\Lambda} \pi^{\pm})$ data, Sc. 1,2,3;

- 0.2<*z*∧<0.3 0.3<*z*∧<0.4 $0.4 < z_{\Lambda} < 0.5$ 0.5<*z*∧<0.9 $+ \Lambda + K^{-}$ 0.1 0.0 Polarization -0.1 0.0 -0.1(c) -0.2 $\Lambda + K^+$ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 Zĸ
- Good agreement for $\Lambda K^{-}(\overline{\Lambda}K^{+})$ data, Sc. 1,2,3;
- Sc. 1 (no charm/no SU(2)) cannot describe $\Lambda K^+(\overline{\Lambda}K^-)$ data with $z_K > 0.5$;
- Inclusion of charm allows for similar good fits (w/, w/o SU(2))

A LOOK INTO ΛK^+ VS. $\Lambda \pi^+$ AT LARGE $z_{K/\pi}$ $P_n(\Lambda K^+) \simeq 4D_{K^+/u} \Delta^N D_{\Lambda^{\uparrow}/\bar{u}} + D_{K^+/\bar{s}}$ $P_n(\Lambda \pi^+) \simeq 4D_{\pi^+/u} \Delta^N D_{\Lambda^+/\bar{u}} + D_{\pi^+/\bar{d}}$

- Both negative and increasing at large z
- Sc 1: down pFF<0 ...enough for $\Lambda \pi^+$
- Sc 2: inclusion of charm implies larger pFFs (down pFF stable): negative strange and the sea pFF larger
- Sc 3: inclusion of charm & SU(2) symmetry (down pFF>0) even larger size of the sea pFF (strange pFF stable w.r.t. Sc 2)

GENERAL REMARKS FROM e^+e^-

- Charm in unpol. xsec improves the quality of the fit (kaons)
- Polarizing FF for charm: tried but without any improvement
- Sc 2 and 3 (charm, w/ or w/o SU(2) symmetry) equally good
- If SU(2) not imposed, fits favor opposite pFFs for u, d
 STRONG SU(2) symmetry violation
- Where/how can we check it?
- Different energies in e^+e^- do not help.

SIDIS

PREDICTIONS FOR EIC

- Sc. 1 & 2: no significant differences
- Λ pol. decreases and becomes negative
- $\overline{\Lambda}$ is always negative

- Sc. 3: similar size
- Λ pol. slightly greater
- $\overline{\Lambda}$ most significant difference

Impact study in SIDIS @ EIC (Sc 1 at LO) Kang, Terry, Vossen, Xu, Zhang 2022

U. D'Alesio University and INFN Cagliari TMDs: Lattice & Global Analyses, June 21, 2023

INTRINSIC CHARM IN THE PROTON WITHIN SCENARIO 2

- CT14 nnlo IC set with BHPS model [T.-J. Hou *et al.*, 2018]
- NNPDF4.0 nnlo set [NNPDF Coll. 2022]

- BHPS and NNPDF: similar polarization values
- compatible with no intrinsic charm case

INTRINSIC CHARM IN THE PROTON WITHIN SCENARIO 3

- CT14 nnlo IC set with BHPS model [T.-J. Hou *et al.*, 2018]
- NNPDF4.0 nnlo set [NNPDF Coll. 2022]

- Estimates vary significantly as x_B increases;
- $\overline{\Lambda}$ estimates different w.r.t. the no IC case;
- Similar behavior with perturbative charm contribution

CONCLUDING REMARKS

- □ New fit of Belle $e^+e^- \rightarrow h_1 h_2 + X$ data on transverse Λ polarization within a TMD factorization at NLL accuracy
- Extraction of the polarizing FFs within three scenarios
- □ Charm contribution (seems) relevant
- \Box SU(2) symmetry issue: no clear conclusion from e^+e^- data
- Predictions for SIDIS@EIC
 - \checkmark SU(2) symmetry could be tested
 - $\checkmark \overline{\Lambda}$ special role [Λ dominated by u and d]
 - check of the universality and scale evolution of the pFFs

THANKS for the **ATTENTION**

BACK-UP SLIDES

