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TMDs: center piece of nucleon structure
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Transverse-momentum-dependent (TMD) 
Parton distributions

n Generalize Feynman parton distribution q(x) by including 
the transverse momentum dependence 

q(x,kT) 
§ At small kT, the transverse-momentum dependence is 

generated by soft non-perturbative physics.
n At large kT, the k-dependence can be calculated in 

perturbative QCD and falls like powers of 1/kT
2



Where can we learn TMDs: two scales
n Semi-inclusive hadron production in deep inelastic 

scattering (SIDIS)
n Drell-Yan lepton pair, photon pair productions in pp 

scattering
n Dijet correlation in DIS
n Relevant e+e- annihilation processes
n …
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Except: Friday morning



Collinear vs TMD factorization

n TMD factorization is an extension and simplification 
to the collinear factorization

n Extends to the region where collinear fails
n Simplifies the kinematics

¨Power counting, correction 1/Q neglected
   s(PT,Q)=H(Q) f1(k1T,Q) f2(k2T, Q) S(lT)
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TMD factorization: a nutshell 
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TMD predictions rely on

n Non-perturbative TMDs constrained from experiments
n QCD evolutions, in particular, respect to the hard 

momentum scale Q
¨Strong theory/phenomenological efforts in the last few years
¨Need more exp. data/lattice calculations

Tremendous progress has been made!!
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Soft gluon radiation leads to Sudakov Logarithms

n Differential cross section depends on Q1=qT, where 
Q2>>Q1

2>>L2
QCD

n Resummation of these large logs 
¨ In terms of transverse momentum dependent parton 

distributions and fragmentation functions and apply to
¨Semi-inclusive hadron production in DIS, Drell-Yan type of hard 

processes in pp collisions, e.g., Higgs, Z/W boson, …

Sudakov, 1956; Collins-Soper-Sterman 1985
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How Large of the Resummation effects

Resum

NLO
Kulesza, Sterman, Vogelsang, 02 
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Collins-Soper-Sterman Resummation
n s(PT,Q)=H(Q) f1(k1T,Q) f2(k2T, Q) S(lT)
n Large Logs are resummed by solving the energy 

evolution equation of the TMDs

n K and G obey the renormalization group eq.

(Collins-Soper 81, Collins-Soper-Sterman 85)
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CSS Formalism (II)
n The large logs will be resummed into the 

exponential form factor

¨A,B,C functions are perturbative calculable
¨ f1,f2 are integrated PDFs
¨all are scheme-independent
¨Collins 2011 is slightly different, but final results are the 

same
(Collins-Soper-Sterman 85)



Non-perturbative input: b* prescription

n b* always in perturbative region

n This will introduce a non-perturbative form factors
 
n Generic behavior
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In the above equations, the Fourier transform to obtain the transverse momentum dis-
tribution involves the large b region, where the integral will encounter the so-called Landau
pole singularity. In order to avoid the Landau pole singularity, it was suggested the b⇥
prescription,

b ⇤ b⇥ = b/
⇧
1 + b2/bmax2 , (24)

where bmax is a parameter. From the above definition, b is always in the perturbative region
where bmax is normally chosen to be around 1GeV �1. Because of the introduction of b⇥ in
the Sudakov form factor, the di�erence from the original form factor requires additional non-
perturbative form factor. This non-perturbative form factor can be schematically calculated
as

SNP �
⇤ 1/b�

1/b

dµ

µ

�
A ln

Q2

µ2
+B

⇥
, (25)

where we have neglected the running e�ects from the strong coupling �s. By doing the
above integral, we find that the non-perturbative form factor depends on lnQ. Therefore,
we can write down,

SNP = g2(b) lnQ+ g1(b) . (26)

In the literature, g1 and g2 are parameterized as b2, which is consistent with the small-b
behavior from the above analysis. However, at large-b, they could be di�erent from b2.
Naively, we find that g1 � g2 � ln b/b⇥. However, at very large-b, a Gaussian or exponential
functional dependence is nature for g1, whereas g2(b) could be ln b or constant.

In the BLNY fit, the following functional form has been chosen,

SNP = g1b
2 + g2 ln

Q

2Q0
+ g1g3 ln(100x1x2) , (27)

where Q0 = 1.6GeV and g1,2,3 are fitting parameters. Therefore, the final Sudakov form
factor can be written as

Ssud ⇤ Spert(Q; b⇥) + SNP (Q; b) . (28)

In Rogers et al. approach, we can write down two equations by employing the above
evolution equation,

⌅F �
sivers(Q; b) = e�Spert(Q2,b�)�SNP (Q,b) ⌅F �

sivers(C1/b, b)
⌅F �
sivers(QL; b) = e�Spert(Q2

L,b�)�SNP (QL,b) ⌅F �
sivers(C1/b, b) . (29)

By combining the above two equations, we find that F (Q) can be written in terms of F (QL),

⌅F �
sivers(Q; b) = e�(Spert(Q,b�)�Spert(QL,b�))e�(SNP (Q,b)�SNP (QL,b)) ⌅F �

sivers(QL; b) . (30)

The second exponential factor can be easily calculated e
�g2b2 ln

Q
QL . It is this factor that leads

to strong Q dependence in the form factor calculations.

D. Semi-inclusive DIS

The focus of the present study is the Sivers-type single stransverse spin asymmetrie in
semi-inclusive hadron production in lepton-hadron deep inelastic scattering (SIDIS),

e(⇣) + p(P ) ⇥ e(⇣⇤) + h(Ph) +X , (31)
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In the BLNY fit, the following functional form has been chosen,
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In the above equations, the Fourier transform to obtain the transverse momentum dis-
tribution involves the large b region, where the integral will encounter the so-called Landau
pole singularity. In order to avoid the Landau pole singularity, it was suggested the b⇥
prescription,

b ⇤ b⇥ = b/
⇧

1 + b2/b2max , bmax < 1/�QCD , (24)

where bmax is a parameter. From the above definition, b is always in the perturbative region
where bmax is normally chosen to be around 1GeV �1. Because of the introduction of b⇥ in
the Sudakov form factor, the di⇥erence from the original form factor requires additional non-
perturbative form factor. This non-perturbative form factor can be schematically calculated
as

SNP ⇥
⇤ 1/b�

1/b
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µ

�
A ln

Q2

µ2
+B

⇥
, (25)

where we have neglected the running e⇥ects from the strong coupling �s. By doing the
above integral, we find that the non-perturbative form factor depends on lnQ. Therefore,
we can write down,

SNP = g2(b) lnQ+ g1(b) . (26)

In the literature, g1 and g2 are parameterized as b2, which is consistent with the small-b
behavior from the above analysis. However, at large-b, they could be di⇥erent from b2.
Naively, we find that g1 ⇥ g2 ⇥ ln b/b⇥. However, at very large-b, a Gaussian or exponential
functional dependence is nature for g1, whereas g2(b) could be ln b or constant.

In the BLNY fit, the following functional form has been chosen,

SNP = g1b
2 + g2 ln

Q

2Q0
+ g1g3 ln(100x1x2) , (27)

where Q0 = 1.6GeV and g1,2,3 are fitting parameters. Therefore, the final Sudakov form
factor can be written as

Ssud ⇤ Spert(Q; b⇥) + SNP (Q; b) . (28)

SNP = a(Q)b2, bmax = 1.5GeV �1 In Rogers et al. approach, we can write down two
equations by employing the above evolution equation,

⌅F �
sivers(Q; b) = e�Spert(Q2,b�)�SNP (Q,b) ⌅F �

sivers(C1/b, b)
⌅F �
sivers(QL; b) = e�Spert(Q2

L,b�)�SNP (QL,b) ⌅F �
sivers(C1/b, b) . (29)

By combining the above two equations, we find that F (Q) can be written in terms of F (QL),

⌅F �
sivers(Q; b) = e�(Spert(Q,b�)�Spert(QL,b�))

�e�(SNP (Q,b)�SNP (QL,b))

� ⌅F �
sivers(QL; b) . (30)

The second exponential factor can be easily calculated e
�g2b2 ln

Q
QL . It is this factor that leads

to strong Q dependence in the form factor calculations.
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Collins-Soper-Sterman 85
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n Phenomenogical applications of the QCD resummation 
to the PT spectrum of EW bosons production have 
been very successful

 Yuan, Nadolsky, Ladinsky, Landry, 
 Qiu, Zhang, Berger, Li, 
 Laenen, Sterman, Vogelsang, Kulesza,
 Bozzi, Catani, deFlorian,
 Kulesza, Stirling, and many others, …

CSS Resummation Phenomenology

around and before 2000



BLNY form factors and ResBos
n Fit to Drell-Yan and W/Z boson production
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important guidelines for future studies following the CSS resummation method in terms of
collinear parton distributions and fragmentation functions. We will present more detailed
results of this calculation in a separate publication.

We thank John Collins for many stimulating discussions, suggestions, and critical com-
ments during the process of this project. We thank Jianwei Qiu, Ted Rogers, Werner
Vogelsang for comments and correspondences. We also thank Paul Hoyer for bringing us
attention of Ref. [25]. This work was partially supported by the U. S. Department of Energy
via grant DE-AC02-05CH11231, and by the U.S. National Science Foundation under Grant
No. PHY-0855561.
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FIG. 1: Coe�cient a(Q) in the non-perturbative form factor e�SNP = e�a(Q)b2 for the TMD quark
distribution as function of Q: the dot represents the value needed for the SIDIS as compared to
the BLNY (dashed line) and KN (solid line) parameterizations for x = 0.1.

B. Incompatibility between BLNY and SIDIS Data from HERMES/COMPASS

The CSS resummation with b⇥-prescription has been extensive applied to describe low
transverse momentum Drell-Yan and W/Z boson production in hadronic collisions, in par-
ticular, in a series publications by BLNY collaboration. These studies have demonstrated
the prediction power and strength of the CSS resummation formalism. Recent experimental
measurements at the LHC have confirmed the predictions from this resummation calculation.

In the BLNY fit, the following functional form has been chosen,

SNP = g1b
2 + g2b

2 ln (Q/3.2) + g1g3b
2 ln(100x1x2) , (61)

where g1,2,3 are fitting parameters,

g1 = 0.21, g2 = 0.68, g1g3 = �0.2, with bmax = 0.5GeV �1 , (62)

However, this parameterization does not describe the SIDIS data from HER-
MES/COMPASS. The main reason is that the BLNY was fitted to the relative high Q2

Drell-Yan/W/Z processes. In a later publication, KN find that,

g1 = 0.20, g2 = 0.184, g1g3 = �0.026, with bmax = 1.5GeV �1 . (63)

To illustrate this issue, in Fig. 1, we plot the non-perturbative form factor derived from
these parameterizations, one from BLNY, and one from KN paper. If we extrapolate these
parameterizations down to Q2 ⇤ 3GeV 2 for SIDIS at HERMES and COMPASS range, we
find that ln

�
e�SNP

⇥
= �a(Q)b2 for typical value of x ⇤ 0.1 is too small to describe the data.

Part of the reason is that the relative low Q2 in current SIDIS experiments from HERMES
and COMPASS. In this kinematics, Q2 is in the range of 2 ⇥ 3GeV 2. However, in the
b⇥-prescription, 1/b⇥ ⇥ 1/bmax ⇤ 1.5GeV is also in the similar range. The logarithmic
dependence of the non-perturbative form factor may over estimate the evolution e�ects in
this region.
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CSS Formalism (III): Universality
n Apply the renormalization group equation,

n Process-dependence in hard factor
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Catani-de Florian-Grazzini 2000



CSS Formalism (IV): TMD Interpretation

n Factorized in terms of subtracted TMDs

n Hard factor in the CSS resummation written as

6/22/23 16
Prokudin-Sun-Yuan 2015



SIYY parameterization and TMDs

n Log(Q) term motivated by 
matching to perturbative 
form factors 
¨Collins-Soper 87

n Small-x behavior 
motivated by saturation 
model suggestions

6/22/23 17
Sun-Issac-Yuan-Yuan, 2014; Prokudin-Sun-Yuan, 2014

Isovector quark

x



Comments 
n Resummation in terms of the integrated PDFs, the 

final result is scheme-independent
¨Universality of the TMD distributions

n It will be important to compare the universal TMD 
distribution extracted from exp. with the Lattice 
calculation at the same factorization scale with full 
resummation effects
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Energy evolution: Collins-Soper Kernel

n CS kernel is scheme-dependent 
¨JMY/Lattice scheme, it contains both hard and soft 

contributions: K+G
¨JCC/SCET schemes, it only has the soft term: K

n Therefore, one has to be careful when we compare the 
CS kernel from different schemes, lattice, and 
phenomenology
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CS Kernel from CSS resummation
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Discussions 

n We should unify the TMD interpretation extracted from 
the global analyses
¨Universal TMDs suggested by Catani-de Florian-Grazzini is a 

good starting point
n When we compare to Lattice simulations on these TMDs 

and Collins-Soper kernel, we need to be careful, 
including all resummation effects
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Jin-Chen He, et al, arXiv:2211.02340

TMD quark distributions compared to 
global analyses 



Collins-Soper Kernel in LaMET
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Matching coeff.
Need resummation


