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Goal
Construct an angular EIC observable that optimally resolves
how spin and transverse momentum are distributed
within the nucleon, and transferred during hadronization.

https://arxiv.org/abs/2209.11211


SIDIS and transverse momentum reconstruction

Semi-inclusive Deep-Inelastic Scattering:

• Workhorse process at the EIC to unveil structure of the nucleon

• Cross section for ~PhT ∼ ΛQCD � Q factorizes into

Transverse-Momentum Dependent
{
Parton Distribution Functions
Fragmentation Functions

• Experimental challenge: Reconstructing small ~PhT from large ~̀′ ∼ Q

e.g. Typical exp. resolution |~̀′| = (20± 0.5) GeV⇒ |~PhT | = (1± 0.5) GeV
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SIDIS and transverse momentum reconstruction

Semi-inclusive Deep-Inelastic Scattering:

• Workhorse process at the EIC to unveil structure of the nucleon

• Cross section for ~PhT ∼ ΛQCD � Q factorizes into

Transverse-Momentum Dependent
{
Parton Distribution Functions
Fragmentation Functions

• Experimental challenge: Reconstructing small ~PhT from large ~̀′ ∼ Q

e.g. Typical exp. resolution |~̀′| = (20± 0.5) GeV⇒ |~PhT | = (1± 0.5) GeV

New observable to deliver
order of magnitude

improvement in resolution.
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Constructing the observable: Key idea

Idea
Charged-particle track angles are much easier to measure than momenta.
I Construct a TMD observable purely in terms of lab-frame angles!

• Inspired by (but with key di�erences to) φ∗η observable in unpol’ed Drell-Yan:
[Banfi et al., EPJC 71, 1600 (2011), arXiv:1009.1580]
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Constructing the observable: Acoplanarity angle

target
rest frame

Trento frame EIC frame

lepton
plane

~q
N ~̀

~̀′
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~PhT

φrest
acop

=−φEIC
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φh
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z′ xEIC
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• Look at target rest frame with incoming electron along z axis
• Boost along z direction to get to EIC lab frame
• Azimuthal angles identical, lab pseudorapidities⇔ rest-frame polar angles

• Need (small) nonzero PhT for e−N → e−h scatter to be (a little bit) nonplanar

• Work out acoplanarity angle for small λ ∼ PhT /Q� 1:

tanφrest
acop =

sinφh PhT

zQ
√

1− y
+O(λ2)

q
µ

= `
µ − `

′µ
z = P · Ph/P · q

Q
2
= −q2 y = P · q/P · `
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Constructing the observable: Double-angle method revisited

target
rest
frame

EIC
frame

Trento
frame

N

α
θe

θh

~̀
~̀′

~̀⊥

~̀′⊥

~Ph

z

x

zEIC

xEIC

z′

x′

tanφrest
acop =

sinφh PhT

zQ
√

1− y
+O(λ2) ⇒ get rid of prefactors?

• For PhT ∼ λQ� Q, can get Q, y (and x) from hadron & electron angles:

Q2 = (`0rest)
2
[sin2 θe

cos2 α
−
(
1− sin θh

cosα

)2]
+O(λ) y = 1− sin θh

cosα
+O(λ2)

I Same form as HERA “double-angle formula” using a tree-level “struck quark”
[S. Bentvelsen, J. Engelen, and P. Kooijman, in Workshop on Physics at HERA (1992).]

I By contrast, this is valid to all orders in αs and controlled by TMD limit
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Constructing the observable: Double-angle method revisited

target
rest
frame

EIC
frame

Trento
frame

N

α
θe

θh

~̀
~̀′

~̀⊥

~̀′⊥

~Ph

z

x

zEIC

xEIC

z′

x′

• Convert to EIC lab-frame pseudorapidites and take M � Q (for brevity):

Q2 = (2P 0
EIC)2 e

ηe+ηh

1 + e∆η
+O(λ) y =

1

1 + e∆η
+O(λ2)

I Combine with φacop to construct a purely angular SIDIS TMD observable:

q∗ ≡ 2P 0
EIC

eηh

1 + e∆η
tanφEIC

acop = − sinφh
PhT
z

[
1 +O(λ)

]
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Theory properties: Getting an intuition for q∗
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• Key property: q∗ ∝ tanφEIC
acop ∝ − sinφh is a signed observable

• Spectrum is even and peaked at q∗ = 0 for unpolarized nucleons
• Single-Spin Asymmetries (SSAs) induce odd contributions!

[See Liu, Ringer, Vogelsang, Yuan ’18 for odd (Sivers) e�ect in DIS jet production] 7/13



Theory properties: Leading-power TMD factorization for q∗

• Start from simple leading-power form of q∗ = − sinφh
PhT
z

• Insert into standard leading-power SIDIS TMD factorization for ~PhT

e.g. W cos(2φh)
UU (x,z,PhT ) ∝

∫ ∞
0

dbT bT
2π

H h̃⊥(1)
1 (x,bT )H̃

⊥(1)
1 (z,bT ) J2

(
bT
PhT
z

)
[Bessel integral: Boer, Gamberg, Musch, Prokudin, ’11]
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z

)
cos(2φh)W

cos(2φh)
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= −2z3

π

∫
dbT H h̃⊥(1)

1 H̃
⊥(1)
1

×
∫ 2π

0

dφH

sin2φh
Θ
(
− q∗

sinφh

)
cos(2φh)

bT |q∗|
2

J2

( bT q∗
sinφh

)
= −2z3

π

∫
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Theory properties: Leading-power TMD factorization for q∗

• Start from simple leading-power form of q∗ = − sinφh
PhT
z

• Insert into standard leading-power SIDIS TMD factorization for ~PhT

I Spectrum factorizes in terms of standard TMD PDFs and FFs:

dσ

dx dy dz dq∗

= H
∫ ∞

0

dbT

{
cos(q∗bT )

(
f̃1 D̃1 − ε h̃⊥(1)

1 H̃
⊥(1)
1 + λe SL

√
1−ε2 g̃1L D̃1

)
+ cosφS sin(q∗bT )ST

(
f̃
⊥(1)
1T D̃1 + ε h̃1 H̃

⊥(1)
1 +

ε

4
h̃
⊥(2)
1T H̃

⊥(1)
1

)
− sinφS sin(q∗bT )λe ST

√
1− ε2 g̃⊥(1)

1T D̃1

}
ε = 1−y

1−y+y2

• Can disentangle (almost all) contributions by forming asymmetries, e.g.:

double asymmetry(±q∗,±λe) ∝ Worm-gear T function g̃(1)
1T

[cf. Horstmann, Schäfer, Vladimirov, 2210.07268, for current challenges in extracting g̃(1)
1T ]
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Experimental properties: Expected detector resolution
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• Simulate SIDIS events in Pythia with Gaussian smearing as detector response
• Use momentum resolution σp/p = (0.05− 1)% p⊕ (0.5− 2)%

[EIC Yellow Report Design Requirements, 2103.05419]

• Assume fixed angular resolution σθ,φ = 0.001

As promised ...

I q∗ is expected to outperform PhT /z by a factor of 10 in resolution.
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Experimental properties: Statistical Sensitivity
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• Generate normalized pseudodata from a simple TMD PDF/FF model at fixed x, z:

f̃ NP
1 (bT ) = e−ω1b

2
T D̃NP

1 (bT ) = αe−ω2b
2
T + (1− α)(1− ω3b

2
T ) e−ω3b

2
T

• Populate Gaussian priors for free parameters ωi from MAPTMD22 global fit
[Bacchetta et al., 2206.07598; see Chiara’s talk this morning!]

• Bayesian reweighting to pseudodata assuming 10 fb−1, Nπ+ = 4.18× 108

⇒ Statistical sensitivity of q∗ to underlying TMD physics compares well to PhT 10/13
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Experimental properties: Robustness against systematic bias
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Can also inject ansatz for systematic detector bias into Bayesian reweighting:

1. Nonuniform detector response ε(X) with X = {pe, ph, ηe, ηh}, e.g. e�ciency:

ε(X) = 1 + ∆εX
(
X − 〈X〉

)
/∆X

⇒ Similar impact on extracted model parameters using either q∗ or PhT

2. Electron momentum scale/calibration uncertainty: pe → (1 + δpe) pe

⇒ q∗ perfectly robust, large bias when using PhT 12/13



Summary

Proposed a new SIDIS TMD observable q∗ for the EIC:

• Defined purely in terms of electron and hadron angles in the lab frame:

q∗ ≡ 2EN
eηh

1 + e∆η
tanφEIC

acop
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• Factorizes in terms of standard TMD PDFs and FFs, retaining sensitivity to spin.

• Superior resolution expected compared to PhT .

• Independent of momentum calibration by construction.

I Bright prospects for mapping the 3D structure of hadronization and confinement!
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• Factorizes in terms of standard TMD PDFs and FFs, retaining sensitivity to spin.

• Superior resolution expected compared to PhT .

• Independent of momentum calibration by construction.

I Bright prospects for mapping the 3D structure of hadronization and confinement!

Thank you for your attention!
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Theory properties: Sources & structure of power corrections

Distinguish three sources ofO(λ) corrections in λ ∼ q∗/Q:

1. Power corrections to the observable itself

I Straightforward to compute & retain (see also supplemental material):

q∗ = − sinφh
PhT
z

[
1− cosφh

2

√
1

1− y
PhT
zQ

+O(λ2)

]

2. Power corrections from region |φh| ≤ O(λ) at PhT ∼ Q

I Include through standard Y term computed in collinear factorization

3. Power corrections fromO(λ) hadronic structure functions

I Cahn e�ect Wcosφ drops out due to symmetries of q∗
I Others, in particular spin-dependent ones,

are genuinely interesting in their own right!
[See also talk by Anjie!]
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