Determination of Collins-Soper kernel

and TMDPDFs

from global analysis and lattice

Alexey Vladimirov

Universidad Complutense de Madrid June 22, 2023

<ロ> (四) (四) (三) (三) (三) (三)

TMDs: Towards a Synergy between Lattice QCD and Global Analysis

Comunidad

le Madrid

$$\frac{dF(x,b;\mu,\zeta)}{d\ln\zeta} = -\mathcal{D}(b,\mu)$$

Nonperturbative part of the evolution to be extracted together with TMD distributions

- ▶ Fits of collider data
- Fits of lattice simulations
- ▶ Models

2/21

Alexey Vladimirov

Pert.th. N^2LO

June 22, 2023

3 / 21

Alexey Vladimirov

June 22, 2023

・ロト ・回ト ・ヨト ・ヨト

$$\frac{d\sigma}{dq_T} = \sigma_0 \int \frac{d^2b}{(2\pi)^2} e^{i(bq_T)} C\left(\frac{Q}{\mu}\right) F(x_1, b; \mu, \zeta) F(x_2, b; \mu, \bar{\zeta})$$

 $\begin{array}{ll} {\bf Factorization\ valid\ at:} \\ Q \gg \Lambda & Q \gg q_T & Q \gg k_T \end{array}$

5/21

æ

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

5 / 21

æ

5/21

Alexey Vladimirov

TMD

June 22, 2023

* data included for the first time

► ATLAS

- Z-boson at 8 (y-diff.)
- ▶ Z-boson at 13 TeV (0.1% prec.!)

► CMS

103

500

- Z-boson at 7 and 8 TeV
- Z-boson at 13 TeV (y-diff.)
- ▶ \mathbf{Z}/γ up to $Q = 1000 \mathbf{GeV}$

▶ LHCb

- ▶ Z-boson at 7 and 8 TeV
- ▶ Z-boson at 13 TeV (y-diff.)

Further more:

- Z-boson at Tevatron
- ▶ W-boson at Tevatron
- ▶ Z-boson at RHIC
- DY at PHENIX
- ▶ DY at FERMILAB (fix target)

627 data points

vs. 457 in SV19 vs. 484 in MAP22

イロト イヨト イヨト イヨト

Alexey Vladimirov

 10^{-4}

103

500

 10^{-3}

 10^{-2}

CMS

 10^{-1}

CDF, D0 (W-boson)

STAR

TMD

Extra features of analyses:

- ▶ Flavor dependent NP-ansatz (first time!)
 - ▶ 2 parameters per flavor
 - \blacktriangleright u, d, \bar{u} , \bar{d} , rest
- ▶ New parametrization for Collins-Soper kernel (3 parameters)
- ► Consistent inclusion of the PDF uncertainty (first time!)
- \blacktriangleright artemide

A 1	3.7			
Alexey	7 V	lad	ımı	rov

.⊒ . >

(口) (四) (

Very presice test of TMD evolution

9/21

・ロト ・回ト ・ヨト ・ヨト

TOTAL ($N_{\rm pt} = 627$): $\chi^2 / N_{\rm pt} = 0.96^{+0.09}_{-0.01}$

10 / 21

Bless and curse of small-b matching $F_{q \leftarrow h}$

$$\lim_{b \to 0} F(x, b) \sim f(x, \mu) + a_s \dots$$

+ power corrections
Usual model:

Ī

erturbative

b∼B

Leading order OPE

n=0

Perturbative

b≪1/Q

 $b \sim \Lambda^{-1}$

113

Von-Perturbative

b

$$F(x,b) = f_{\text{small-b}}(x,b^*) f_{\text{NP}}(x,b)$$

$$f_{\rm NP}(x,b) = 1 + \mathcal{O}(b^2)$$

A D > A D > A

ヨウ

Bless and curse of small-b matching

Why is it good:

- ▶ use the power of perturbation theory in the important region
- ▶ re-use/agreement with collinear fits
- ▶ conceptually the model is still very general

Why is it bad:

▶ Extremely restrict the freedom (if one uses a "small" number of parameters)

??-bias

PDF-bias

$$\lim_{b \to 0} \mathcal{D}(b) \sim a_s(\mu) 2C_F \mathbf{L}_{\mu} + a_s^2 \dots$$

+ power corrections

Usual model:

$$\mathcal{D}(b,\mu) = \mathcal{D}_{\text{small-b}}(b^*,\mu) + g_{\text{NP}}(b)$$

$$g_{\rm NP}(b) = \mathcal{O}(b^2)$$

 $\lim_{b \to 0} F(x, b) \sim f(x, \overline{\mu}) + a_s \dots$ + power corrections

Usual model:

$$F(x,b) = f_{\text{small-b}}(x,b^*) f_{\text{NP}}(x,b)$$

$$f_{\rm NP}(x,b) = 1 + \mathcal{O}(b^2)$$

How to fight PDF-bias?

```
[Bury, et al: 2201.07114]
```

- ▶ (Ultimately) Fit PDF and TMDPDF together
- ▶ (Poor man solution)Include PDF uncertainty into the TMD fit
- ▶ Increase flexibility of ansatz (flavor-dependence)

How to fight PDF-bias?

```
[Bury, et al: 2201.07114]
```

- (Ultimately) Fit PDF and TMDPDF together
- (Poor man solution)Include PDF uncertainty into the TMD fit
- Increase flexibility of ansatz (flavor-dependence)

How to fight PDF-bias?

[Bury, et al: 2201.07114]

[LPC:2211.02340]

- ▶ (Ultimately) Fit PDF and TMDPDF together
- ▶ (Poor man solution)Include PDF uncertainty into the TMD fit
- ▶ Increase flexibility of ansatz (flavor-dependence)

12/21

How to fight ??-bias?

13 / 21

Ę

(日)、<日)、<</p>

How to fight ??-bias?

Very small uncertanties (despite huge in TMDPDFs)

・ロト ・回ト ・ヨト ・ヨト

Very small uncertanties (despite huge in TMDPDFs)

Can lattice compete with it?

PRO

- ▶ Can access large-b
- ▶ Can study "exotic" sources
- ▶ Directly in b-space

CONTRA

- Large power corrections
- Lattice artifacts
- ▶ Unknown scheme factor

・ロト ・日下 ・ヨト

→

Very small uncertanties (despite huge in TMDPDFs)

Can lattice compete with it? What can lattice add to it?

PRO

- ▶ Can access large-b
- ▶ Can study "exotic" sources
- Directly in b-space

CONTRA

- Large power corrections
- Lattice artifacts
- ▶ Unknown scheme factor

14/21

Measuring evolution in experiment and lattice

$$d\sigma(Q,q_T) = \int d^2 b e^{i(qb)} H_{\rm DY} \ F(x_1,b) \ F(x_2,b)$$

$$\Omega(\ell, b; (vP)) = \int dx e^{ix\ell p} H_{qTMD} F(x, b) \Psi(b)$$
N²LO
"reduced SF"
[O.Rio, AV:2304.14440]
"instant-jet" TMD

Measuring evolution in experiment and lattice

$$d\sigma(Q,q_T) = \int d^2 b e^{i(qb)} H_{\text{DY}} F(x_1,b) F(x_2,b) \qquad \longrightarrow \quad \frac{\mathcal{F}^{-1} d\sigma(Q_1)}{\mathcal{F}^{-1} d\sigma(Q_2)} = \frac{H_{\text{DY}}(Q_1)}{H_{\text{DY}}(Q_2)} R(Q_1 \to Q_2)[\mathcal{D}(b)]$$

$$\Omega(\ell, b; (vP)) = \int dx e^{ix\ell p} H_{qTMD} F(x, b) \Psi(b) \longrightarrow \frac{\mathcal{F}^{-1}\Omega((vp_1))}{\mathcal{F}^{-1}\Omega((vp_2))} = \frac{H_q(vp_1)}{H_q(vp_2)} R((vp_1) \to (vp_2))[\mathcal{D}(b)]$$

$$N^2 LO \qquad \text{``reduced SF''}$$
[O.Rio, AV:2304.14440] ``instant-jet'' TMD

(日) (四) (三) (三)

Measuring evolution in experiment and lattice

$$d\sigma(Q,q_T) = \int d^2 b e^{i(qb)} H_{\mathrm{DY}} F(x_1,b) F(x_2,b) \qquad \longrightarrow \quad \frac{\mathcal{F}^{-1} d\sigma(Q_1)}{\mathcal{F}^{-1} d\sigma(Q_2)} = \frac{H_{\mathrm{DY}}(Q_1)}{H_{\mathrm{DY}}(Q_2)} R(Q_1 \to Q_2)[\mathcal{D}(b)]$$

In future lattice will be preciser, but experiment will be also preciser.

The true power of lattice simulations is access to "difficult" or impossible for experiment channels

- ► x-moments of TMDs
- ▶ Gluon CS-kernel
- ▶ Gluon TMDs
- ▶ Meson TMDs
- ► Higher-twist TMDs
-

Latest example: test of of universality of CS kernel

[Hai-Tao Shu, M.Schlemmer, T.Sizmann, et al: 2302.06502]

Collins-Soper kernel is the evolution kernel for TMDs and it universal for

- ▶ All TMDPDFs/TMDFFs of twist-2 (all types and hadrons)
- All TMDPDFs/TMDFFs of twist-3 (all types and hadrons) [AV, et al, 2008.01744], [Ebert, at al, 2112.09771]
- ▶ All quasi-partonic TMDPDFs/TMDFFs of twist-3 (all types and hadrons) [AV, et al, 2008.01744]

 $K = -2\mathcal{D}$

NLP TMD factorization is very complicated! [Rodini,AV:2211.04494]

NLP TMD factorization is very complicated!

Alexey Vladimirov

Check of universality for $\{f_1(proton), f_1(pion), e(proton), e(pion)\}$ [Hai-Tao Shu, et al,2302.06502]

 $K = -2\mathcal{D}$

19/21

æ

・ロト ・回ト ・ヨト ・ヨト

Conclusion

TMDs: Towards a Synergy between Lattice QCD and Global Analysis

The synergy in the phenomenology of lattice and collider data is in their complementarity b-space $\longleftrightarrow k_T$ -space low-energy \longleftrightarrow high-energy low-statistic many channels \longleftrightarrow few channels ... \longleftrightarrow ...

Outline of talk:

- ► ART23 extraction
 - \triangleright N⁴LL
 - ▶ Larger data set (mainly due to LHC data)
 - ▶ (more) Accurate determination of uncertanties
 - artemide: https://github.com/VladimirovAlexey/artemide-public
- Universality of CS kernel
 - Evolution for different polarizations is the same
 - Evolution for twist-2 and twist-3 TMDs is the same
 - ▶ Evolution for pion and proton TMDs is the same

(I) < (I)

Universidad Complutense de Madrid

23-27 October 2023

https://indico.fis.ucm.es/event/19/

(registration is open)

21/21

Backup slides

22 / 21

æ

(日) (四) (三) (三)

data set	$N_{ m pt}$	$\chi^2_D/N_{\rm pt}$	$\chi_\lambda^2/N_{\rm pt}$	$\chi^2/N_{\rm pt}$
CDF (run1)	33	0.51	0.16	$0.67^{+0.05}_{-0.03}$
CDF (run2)	45	1.58	0.11	$1.59^{+0.26}_{-0.14}$
CDF (W-boson)	6	0.33	0.00	$0.33\substack{+0.01\\-0.01}$
D0 (run1)	16	0.69	0.00	$0.69\substack{+0.08\\-0.03}$
D0 (run2)	13	2.16	0.16	$2.32^{+0.40}_{-0.32}$
D0 (W-boson)	7	2.39	0.00	$2.39^{+0.20}_{-0.18}$
ATLAS (8 TeV, $Q \sim M_Z)$	30	1.60	0.49	$2.09^{+1.09}_{-0.35}$
ATLAS (8TeV)	14	1.11	0.11	$1.22^{+0.47}_{-0.21}$
ATLAS (13 TeV)	5	1.94	1.75	$3.70^{+16.5}_{-2.24}$
CMS (7TeV)	8	1.30	0.00	$1.30\substack{+0.03\\-0.01}$
CMS (8TeV)	8	0.79	0.00	$0.78^{+0.02}_{-0.01}$
CMS (13 TeV, $Q \sim M_Z$)	64	0.63	0.24	$0.86^{+0.23}_{-0.11}$
CMS (13 TeV, $Q > M_Z$)	33	0.73	0.12	$0.92\substack{+0.40 \\ -0.15}$
LHCb (7 TeV)	10	1.21	0.56	$1.77_{-0.31}^{+0.53}$
LHCb (8 TeV)	9	0.77	0.78	$1.55_{-0.50}^{+0.94}$
LHCb (13 TeV)	49	1.07	0.10	$1.18\substack{+0.25\\-0.01}$
PHENIX	3	0.29	0.12	$0.42\substack{+0.15\\-0.10}$
STAR	11	1.91	0.28	$2.19\substack{+0.51 \\ -0.31}$
E288 (200)	43	0.31	0.07	$0.38^{+0.12}_{-0.05}$
E288 (300)	53	0.36	0.07	$0.43^{+0.08}_{-0.04}$
E288 (400)	79	0.37	0.05	$0.48^{+0.11}_{-0.03}$
E772	35	0.87	0.21	$1.08\substack{+0.08 \\ -0.05}$
E605	53	0.18	0.21	$0.39\substack{+0.03 \\ -0.00}$
Total	627	0.79	0.17	$0.96\substack{+0.09\\-0.01}$

Alexey Vladimirov

June 22, 2023

< □ > < (四) < (四) > < (回) > (回) > (回) = (回) < (回) > (回) = (回) > ((u) > (u)

23 / 21