Determination of Collins-Soper kernel

and TMDPDFs

from global analysis and lattice

Alexey Vladimirov
Universidad Complutense de Madrid
June 22, 2023

TMDs: Towards a Synergy between Lattice QCD and Global Analysis

$$
\frac{d F(x, b ; \mu, \zeta)}{d \ln \zeta}=-\mathcal{D}(b, \mu)
$$

Nonperturbative part of the evolution to be extracted together with TMD distributions

- Fits of collider data
- Fits of lattice simulations
- Models

- Same realisation (ζ-prescription)
- Same code (artemide)
- Better model
- More precise data

TMD factorization theorem

$$
\frac{d \sigma}{d q_{T}}=\sigma_{0} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{i\left(b q_{T}\right)} C\left(\frac{Q}{\mu}\right) F\left(x_{1}, b ; \mu, \zeta\right) F\left(x_{2}, b ; \mu, \bar{\zeta}\right)
$$

Factorization valid at:
$Q \gg \quad Q \gg q_{T} \quad Q \gg k_{T}$

TMD factorization theorem

TMD factorization theorem

TMD factorization theorem

Altogether N^{4} LL
(in resummation nomenclature)

- ATLAS
- Z-boson at 8 (y-diff.)
- Z-boson at 13 TeV (0.1% prec.!)
- CMS
- Z-boson at 7 and 8 TeV
- Z-boson at 13 TeV (y-diff.)
- \mathbf{Z} / γ up to $Q=1000 \mathbf{G e V}$
- LHCb
- Z-boson at 7 and 8 TeV
- Z-boson at 13 TeV (y-diff.)
- Further more:
- Z-boson at Tevatron
- W-boson at Tevatron
- Z-boson at RHIC
- DY at PHENIX
- DY at FERMILAB (fix target)

627 data points

vs. 457 in SV19
vs. 484 in MAP22

ART23

$$
x=10^{-3}
$$

Extra features of analyses:

- Flavor dependent NP-ansatz (first time!)
- 2 parameters per flavor
- u, d, \bar{u}, \bar{d}, rest
- New parametrization for Collins-Soper kernel (3 parameters)
- Consistent inclusion of the PDF uncertainty (first time!)
- artemide

$\operatorname{TOTAL}\left(N_{\mathrm{pt}}=627\right): \quad \chi^{2} / N_{\mathrm{pt}}=0.96_{-0.01}^{+0.09}$

Bless and curse of small-b matching

$\lim _{b \rightarrow 0} \mathcal{D}(b) \sim a_{s}(\mu) 2 C_{F} \mathbf{L}_{\mu}+a_{s}^{2} \ldots$

+ power corrections

Usual model:

$$
\mathcal{D}(b, \mu)=\mathcal{D}_{\text {small-b }}\left(b^{*}, \mu\right)+g_{\mathrm{NP}}(b)
$$

$$
g_{\mathrm{NP}}(b)=\mathcal{O}\left(b^{2}\right)
$$

$$
\lim _{b \rightarrow 0} F(x, b) \sim f(x, \mu)+a_{s} \ldots
$$

$$
+ \text { power corrections }
$$

Usual model:

$$
\begin{gathered}
F(x, b)=f_{\text {small-b }}\left(x, b^{*}\right) f_{\mathrm{NP}}(x, b) \\
f_{\mathrm{NP}}(x, b)=1+\mathcal{O}\left(b^{2}\right)
\end{gathered}
$$

Bless and curse of small-b matching

Why is it good:

- use the power of perturbation theory in the important region
- re-use/agreement with collinear fits
- conceptually the model is still very general

Why is it bad:

- Extremely restrict the freedom (if one uses a "small" number of parameters)
??-bias PDF-bias

$$
\lim _{b \rightarrow 0} \mathcal{D}(b) \sim a_{s}(\mu) 2 C_{F} \mathbf{L}_{\mu}+a_{s}^{2} \ldots
$$

+ power corrections

Usual model:

$$
\mathcal{D}(b, \mu)=\mathcal{D}_{\text {small-b }}\left(b^{*}, \mu\right)+g_{\mathrm{NP}}(b)
$$

$$
g_{\mathrm{NP}}(b)=\mathcal{O}\left(b^{2}\right)
$$

$$
\lim _{b \rightarrow 0} F(x, b) \sim f(x, \mu)+a_{s} \ldots
$$

+ power corrections

Usual model:

$$
\begin{gathered}
F(x, b)=f_{\text {small-b }}\left(x, b^{*}\right) f_{\mathrm{NP}}(x, b) \\
f_{\mathrm{NP}}(x, b)=1+\mathcal{O}\left(b^{2}\right)
\end{gathered}
$$

How to fight PDF-bias?

- (Ultimately) Fit PDF and TMDPDF together
- (Poor man solution)Include PDF uncertainty into the TMD fit
- Increase flexibility of ansatz (flavor-dependence)

How to fight PDF-bias?

- (Ultimately) Fit PDF and TMDPDF together
- (Poor man solution)Include PDF uncertainty into the TMD fit
- Increase flexibility of ansatz (flavor-dependence)

How to fight PDF-bias?

- (Ultimately) Fit PDF and TMDPDF together
- (Poor man solution)Include PDF uncertainty into the TMD fit
- Increase flexibility of ansatz (flavor-dependence)
[LPC:2211.02340]

$b_{\perp}=0.6 \mathrm{fm}=(0.33 \mathrm{GeV})^{-1}$

$b_{\perp}=0.36 \mathrm{fm}=(0.55 \mathrm{GeV})^{-1}$

	This work
	PV17
\cdots	MAPTMD22
\cdots	BHLSVZ22

How to fight ??-bias?

How to fight ??-bias?

$$
\mathcal{D}(b, \mu)=\mathcal{D}_{\text {small-b }}+b b^{*}\left(c_{0}+c_{1} \ln \left(b^{*} / B_{\mathrm{NP}}\right)\right)
$$

$$
\mathcal{D}=\mathcal{D}_{0}+\frac{\mathbf{b}^{2}}{2}\left(\int d \mathbf{r}^{2} \frac{\varphi_{1}\left(\mathbf{r}^{2}, 0,0\right)}{\mathbf{r}^{2}}+\mathcal{O}\left(a_{s}\right)\right)+\mathbf{b}^{4} \ldots
$$

$$
[A V: 2003.02288]
$$

? Time to compute log correction?

Very small uncertanties (despite huge in TMDPDFs)

Very small uncertanties (despite huge in TMDPDFs)

Can lattice compete with it?

PRO

- Can access large-b
- Can study "exotic" sources
- Directly in b-space

CONTRA

- Large power corrections
- Lattice artifacts
- Unknown scheme factor

Very small uncertanties (despite huge in TMDPDFs)

Gan lattice compete with it? What can lattice add to it?

- Can access large-b
- Can study "exotic" sources
- Directly in b-space

CONTRA

- Large power corrections
- Lattice artifacts
- Unknown scheme factor

Measuring evolution in experiment and lattice

$d \sigma\left(Q, q_{T}\right)=\int d^{2} b e^{i(q b)} H_{\mathrm{DY}} F\left(x_{1}, b\right) F\left(x_{2}, b\right)$

Measuring evolution in experiment and lattice

$$
d \sigma\left(Q, q_{T}\right)=\int d^{2} b e^{i(q b)} H_{\mathrm{DY}} F\left(x_{1}, b\right) F\left(x_{2}, b\right) \quad \longrightarrow \frac{\mathcal{F}^{-1} d \sigma\left(Q_{1}\right)}{\mathcal{F}^{-1} d \sigma\left(Q_{2}\right)}=\frac{H_{\mathrm{DY}}\left(Q_{1}\right)}{H_{\mathrm{DY}}\left(Q_{2}\right)} R\left(Q_{1} \rightarrow Q_{2}\right)[\mathcal{D}(b)]
$$

$$
\begin{aligned}
& \Omega(\ell, b ;(v P))=\int d x e^{i x \ell p} H_{\mathrm{qTMD}} F(x, b) \Psi(b) \rightarrow \frac{\mathcal{F}^{-1} \Omega\left(\left(v p_{1}\right)\right)}{\mathcal{F}^{-1} \Omega\left(\left(v p_{2}\right)\right)}=\frac{H_{\mathrm{q}}\left(v p_{1}\right)}{H_{q}\left(v p_{2}\right)} R\left(\left(v p_{1}\right) \rightarrow\left(v p_{2}\right)\right)[\mathcal{D}(b) \\
& \mathrm{N}^{2} \mathrm{LO} \\
& \text { [O.Rio, AV:2304.14440] } \quad \text { "instant-jet" TMD }
\end{aligned}
$$

Measuring evolution in experiment and lattice

$$
d \sigma\left(Q, q_{T}\right)=\int d^{2} b e^{i(q b)} H_{\mathrm{DY}} F\left(x_{1}, b\right) F\left(x_{2}, b\right) \quad \longrightarrow \frac{\mathcal{F}^{-1} d \sigma\left(Q_{1}\right)}{\mathcal{F}^{-1} d \sigma\left(Q_{2}\right)}=\frac{H_{\mathrm{DY}}\left(Q_{1}\right)}{H_{\mathrm{DY}}\left(Q_{2}\right)} R\left(Q_{1} \rightarrow Q_{2}\right)[\mathcal{D}(b)]
$$

$$
\Omega(\ell, b ;(v P))=\int d x e^{i x \ell_{p}} H_{\mathrm{qTMD}} F(x, b) \Psi(b) \quad \longrightarrow \frac{\mathcal{F}^{-1} \Omega\left(\left(v p_{1}\right)\right)}{\mathcal{F}^{-1} \Omega\left(\left(v p_{2}\right)\right)}=\frac{H_{\mathrm{q}}\left(v p_{1}\right)}{H_{q}\left(v p_{2}\right)} R\left(\left(v p_{1}\right) \rightarrow\left(v p_{2}\right)\right)[\mathcal{D}(b)
$$

In future lattice will be preciser, but experiment will be also preciser.
The true power of lattice simulations is access to "difficult" or impossible for experiment channels

- x-moments of TMDs
- Gluon CS-kernel
- Gluon TMDs
- Meson TMDs
- Higher-twist TMDs
-

Latest example:
test of of universality of CS kernel
[Hai-Tao Shu, M.Schlemmer, T.Sizmann, et al: 2302.06502]
Collins-Soper kernel is the evolution kernel for TMDs and it universal for

- All TMDPDFs/TMDFFs of twist-2 (all types and hadrons)
- All TMDPDFs/TMDFFs of twist-3 (all types and hadrons) [AV, et al, 2008.01744],[Ebert,at al, 2112.09771]
- All quasi-partonic TMDPDFs/TMDFFs of twist-3 (all types and hadrons) [AV, et al, $2008.01744]$

Check of universality for $\left\{f_{1}, g_{1 T}, h_{1}\right\}$
[M.Schlemmer, et al,2103.16991]

$$
\begin{array}{llll}
\Phi & F=f_{1}, \quad \delta K=0.06 & \Phi & F=h_{1}, \\
\Phi & \delta K=0.05 \\
\Phi & F=g_{1 T}, \delta K=0.14 & \Phi & \text { Combined, } \delta K=0.06
\end{array}
$$

$$
K=-2 \mathcal{D}
$$

NLP TMD factorization is very complicated!

[Rodini,AV:2211.04494]

NLP TMD factorization is very complicated!

[Rodini,AV:2211.04494]

NLP TMD factorization is very complicated!

[Rodini,AV:2211.04494]

Check of universality for $\left\{f_{1}(\right.$ proton $), f_{1}($ pion $), e($ proton $), e($ pion $\left.)\right\}$ [Hai-Tao Shu, et al,2302.06502]

$$
K=-2 \mathcal{D}
$$

Conclusion

TMDs: Towards a Synergy between Lattice QCD and Global Analysis

The synergy in the phenomenology of lattice and collider data

$$
\left.\begin{array}{rl}
\text { is in their complementarity } \\
\text { b-space } & \longleftrightarrow k_{T} \text {-space } \\
\text { low-energy } & \longleftrightarrow \text { high-energy } \\
\text { low-statistic } \\
\text { many channels } & \longleftrightarrow \text { high-statistic } \\
\text { few channels }
\end{array}\right] \text {... }
$$

Outline of talk:

- ART23 extraction
- $\mathrm{N}^{4} \mathrm{LL}$
- Larger data set (mainly due to LHC data)
- (more) Accurate determination of uncertanties
- artemide: https://github.com/VladimirovAlexey/artemide-public
- Universality of CS kernel
- Evolution for different polarizations is the same
- Evolution for twist-2 and twist-3 TMDs is the same
- Evolution for pion and proton TMDs is the same

Universidad Complutense de Madrid
23-27 October 2023
https://indico.fis.ucm.es/event/19/
(registration is open)

Backup slides

data set	N_{pt}	$\chi_{D}^{2} / N_{\mathrm{pt}}$	$\chi_{\lambda}^{2} / N_{\mathrm{pt}}$	$\chi^{2} / N_{\mathrm{pt}}$
CDF (run1)	33	0.51	0.16	$0.67_{-0.03}^{+0.05}$
CDF (run2)	45	1.58	0.11	$1.59_{-0.14}^{+0.26}$
CDF (W-boson)	6	0.33	0.00	$0.33_{-0.01}^{+0.01}$
D0 (run1)	16	0.69	0.00	$0.69_{-0.03}^{+0.08}$
D0 (run2)	13	2.16	0.16	$2.32_{-0.32}^{+0.40}$
D0 (W-boson)	7	2.39	0.00	$2.39_{-0.18}^{+0.20}$
ATLAS (8TeV, $\left.Q \sim M_{Z}\right)$	30	1.60	0.49	$2.09_{-0.35}^{+1.09}$
ATLAS (8TeV)	14	1.11	0.11	$1.22_{-0.21}^{+0.47}$
ATLAS (13 TeV)	5	1.94	1.75	$3.70_{-2.24}^{+16.5}$
CMS (7TeV)	8	1.30	0.00	$1.30_{-0.01}^{+0.03}$
CMS (8TeV)	8	0.79	0.00	$0.78_{-0.01}^{+0.02}$
CMS (13 TeV, $\left.Q \sim M_{Z}\right)$	64	0.63	0.24	$0.86_{-0.11}^{+0.23}$
CMS (13 TeV, $\left.Q>M_{Z}\right)$	33	0.73	0.12	$0.92_{-0.15}^{+0.40}$
LHCb (7 TeV)	10	1.21	0.56	$1.77_{-0.31}^{+0.53}$
LHCb (8 TeV)	9	0.77	0.78	$1.55_{-0.50}^{+0.94}$
LHCb (13 TeV)	49	1.07	0.10	$1.18_{-0.01}^{+0.25}$
PHENIX	3	0.29	0.12	$0.42_{-0.10}^{+0.15}$
STAR	11	1.91	0.28	$2.19_{-0.31}^{+0.51}$
E288 (200)	43	0.31	0.07	$0.38_{-0.05}^{+0.12}$
E288 (300)	53	0.36	0.07	$0.43_{-0.04}^{+0.08}$
E288 (400)	79	0.37	0.05	$0.48_{-0.03}^{+0.11}$
E772	35	0.87	0.21	$1.08_{-0.05}^{+0.08}$
E605	0.18	0.21	$0.39_{-0.00}^{+0.03}$	
Total	0.79	0.17	$0.96_{-0.01}^{+0.09}$	

