SiPM status and FY203 plans

Roberto Preghenella

Outline

- highlights from 2021 and 2022 irradiation / characterisation campaigns
- highlights from 2022 beam tests
- plans for FY2023

A comparison of the measured DCR shows that at the recommended operation voltages of 3 volts and 5 volts for the S13360-3050VS and S13360-3025VS sensors the DCR of S13360-3050VS is the lowest when the sensors are new. S13360-3050VS and S13360-3025VS sensors show the same DCR after irradiation of a fluence of 10⁹ 1-MeV n_{eq} cm⁻². In all cases, the performance of S13360-3050VS sensors is better than S13360-3025VS because

- the PDE is higher
- the DCR is lower or the same

which means that at all stages the signal-to-noise ratio (SNR) figure of merit of S13360-3050VS sensors is higher than S13360-3025VS. For new sensors the SNR of S13360-3050VS is a factor ~ 5 higher than S13360-3025VS.

Similar results are obtained from measurements of SensL MicroFJ-30035-TSV (35 μ m SPAD size) and MicroFJ-30020-TSV (20 μ m SPAD size) sensors. The datasheet shows that MicroFJ-30035-TSV sensors and MicroFJ-30020-TSV sensors have the same PDE of 38% when operated at 2.5 V and 5 V of overvoltage, respectively. Comparison of the DCR of the sensors at these two recommended operational voltages shows that the DCR of MicroFJ-30035-TSV is lower than the DCR of MicroFJ-30020-TSV sensors both when new and after irradiation with fluences of 10⁹ 1-MeV n_{eq} cm⁻². Similarly as for the Hamamatsu sensors, we can conclude that the SNR figure of merit indicates a better performance for the EIC dRICH purposes of the larger SPAD MicroFJ-30035-TSV sensor, with a SNR larger than MicroFJ-30020-TSV sensors by about a factor 2. We do not have performed measurements on the light response for these two sensors.

Repeated irradiation-annealing cycles

test reproducibility of repeated irradiation-annealing cycles

simulate a realistic experimental situation

- campaign is concluded
 - partial results reported here
 - all measurements in following slides
- 4 cycles performed in 2022
 - irradiation fluence/cycle of 10⁹ n_{eq}
 - <u>annealing</u> in oven for 150 hours at 150 °C
- interleaved with full characterisation
 - new
 - after each irradiation
 - after each annealing

Repeated irradiation-annealing cycles

test reproducibility of repeated irradiation-annealing cycles

simulate a realistic experimental situation

- consistent irradiation damage
 - DCR increases by ~ 500 kHz (@ Vover = 4)
 - \circ after each shot of 10⁹ n_{eq}
- consistent residual damage
 - \circ ~ 15 kHz (@ Vover = 4) of residual DCR
 - builds up after each irradiation-annealing

annealing cures same fraction of newly-produced damage

 $\sim 97\%~$ for HPK S13360-3050 sensors

Online annealing

explore solutions for in-situ annealing

- total fluence of 10⁹ n_{eq} delivered in 5 chunks
 - 0
 - each of 2 10⁸ n_{eq} 0
- interleave by annealing
 - forward bias, ~ 1 W / sensor 0
 - T = 175 °C, thermal camera 0
 - 30 minutes 0
- preliminary tests
 - Hamamatsu S13360-3050 0

Online annealing

Ξ

Repeated annealing results

Radiation damage model (HPK S13360-3050 @ Vover = 3 V)

• reasonable assumptions

- radiation damage is additive
- does not know and care of the past damage
- annealing heals up to a certain fraction of damage, not more than that

• numbers

- \circ DCR when new = 1.5 kHz
- DCR increase with radiation damage = 350 kHz / 10^o neq
- DCR increase with online annealing = $35 \text{ kHz} / 10^{\circ} \text{ neq}$
- DCR residual after oven annealing = 3%

• how it works?

- $\circ \quad \text{ start with DCR as new} \to \mathsf{NEW}$
- \circ add DCR with increasing radiation \rightarrow NEW + NIEL1
- $\circ \quad \text{heal with annealing} \rightarrow \text{NEW} + x \text{ NIEL1}$
- \circ add DCR with increasing radiation \rightarrow NEW + x NIEL1 + NIEL2
- heal with annealing \rightarrow NEW + x (NIEL1 + NIEL2)

this is an old set of slides, these reasonable assumptions have been verified

2022 test beam at CERN-PS

dRICH prototipe on PS beamline with SiPM-ALCOR box

beamline shared with LAPPD test

successful operation of SiPM <u>irradiated</u> (with protons up to 10¹⁰) and <u>annealed</u> (in oven at 150 C)

reference time (ns)

ALCOR

after irradiation with $2 \cdot 10^9 n_{eq}/cm^2$ fluence (protons) and oven annealing at T = 150 C for 150 hours

sensor DCR ~ 15 kHz

reference time is the particle time measured by the timing scintillators an time offset of ~10 ns is removed to correct for distance of ~ 2 m between Cherenkov radiator and timing scintillators

out of topic from test beam but nice and important to share

HAMA1 - 8 GeV negative beam

amount of signals outside of coincidence gate (due to SiPM DCR) is negligible wrt. physical background coincidences (likely due to Rayleigh scattering of Cherenkov light in aerogel)

try with larger coincidence gate smaller gate needs timing calibration (not yet ready)

DCR-background subtracted signal unaffected by width of coincidence gate

Plans for FY 2023

Milestones FY 2023 critical results for pre-TDR

- Timing measurement of irradiated (and annealed) sensors (6/2023)
- Comparison of the results achieved with proton and neutron irradiation sources (8/2023)
- Study of annealing in-situ technique with a proposed model selected as baseline for the pre-TDR (9/2023)

• single-photon time resolution

- of full SiPM-ALCOR readout chain
 - no capacity to measure it so far
- critical to set performance simulation

• alternative annealing solutions

- so far done with industrial oven (days)
- address ideas for faster / in-situ recovery
 - exploration started, promising
 - critical to become structured R&D

• irradiation campaigns

- so far only with 150 MeV protons
- critical to test neutron damage
 - might be topologically different
 - effectiveness of annealing
 - test NIEL damage hypothesis
- irradiation needed to test new annealings

• operation at low temperature

- so far characterisation in climatic chamber
 - compare results with TEC (Peltier) cooling
- explore alternative solution to TEC
 - liquid, hybrid (liquid + TEC) approaches

• development of new sensors

- within INFN-FBK collaboration agreement
 - critical for procurement risk mitigation
- reduction of DCR
 - field / thickness optimisation
 - exploration of advanced microlensing
- development of "monolithic" SiPM sensor array
 - wire bonded, cost reduction

Financial requests for FY2023

SiPM R&D program benefits from significant INFN in-kind contribution

- infrastructures
- o access to irradiation facilities (TIFPA proton, LENA reactor)
- laboratory equipment (power supplies, climatic chamber, ...)
- procurement of new sensors and electronics
- engineering run with FBK

• complementary characterisation setup in Cosenza

- most of the equipment funded by INFN
- request eRD110 support for FPGA eval. board (ALCOR readout) [7.5 k\$]

• other financial requests

- partial support for irradiation costs [14 k\$]
- <u>laser equipment</u> for time resolution measurements [20 k\$]
- partial support to cover the cost of the <u>FBK engineering run</u> [20 k\$]

• manpower

- 6 researcher and several technicians available
 - one post-doc ending contract in early 2023
- request eRD110 support for <u>co-funding of two post-docs</u> [40 k\$]
 - critically required given the extent of the R&D program

R&D plan was initially NOT FUNDED eventually funded with 50 k\$ of PED

we will not be able to deliver full FY23 plans, but honour milestones

fruitful collaboration with FBK

- since the inception
- prototype sensors

great perspective for joint R&D

Plans for FY 2023

Milestones FY 2023 critical results for pre-TDR

- Timing measurement of irradiated (and annealed) sensors (6/2023)
- Comparison of the results achieved with proton and neutron irradiation sources (8/2023)
- Study of annealing in-situ technique with a proposed model selected as baseline for the pre-TDR (9/2023)

single-photon time resolution

- of full SiPM-ALCOR readout chain
 - no capacity to measure it so far
- critical to set performance simulation

alternative annealing solutions

- so far done with industrial oven (days)
- address ideas for faster / in-situ recovery
 - exploration started, promising
 - critical to become structured R&D

irradiation campaigns

will do

will do

will do

maybe within eRD102

no support, will suffer

- so far only with 150 MeV protons
- critical to test neutron damage
 - might be topologically different
 - effectiveness of annealing
 - test NIEL damage hypothesis
- irradiation needed to test new annealings

operation at low temperature

- so far characterisation in climatic chamber
 - compare results with TEC (Peltier) cooling
- explore alternative solution to TEC
 - liquid, hybrid (liquid + TEC) approaches

development of new sensors

- within INFN-FBK collaboration agreement
 - critical for procurement risk mitigation
 - reduction of DCR
 - field / thickness optimisation
 - exploration of advanced microlensing
- development of "monolithic" SiPM sensor array
 - wire bonded, cost reduction

new laser setup for detailed characterisation of SiPM before/after irradiation/annealing

New LIGHT SiPM carriers

our results point towards large SPADs for RICH applications must test 75 um

• 1x4 LIGHT carrier

- keep same boards designed in 2020
- populate 2 / 3 rows
 - 4 sensors / row
- sensors from Hamamatsu
 - 4x S13360-3050
 - 4x S14160-3050
 - 4x S13360-3075
- perform different type of
 - irradiation/annealing studies
 - one LIGHT carrier for each study
- keep a minimal statistical sample for each study
 - 4 sensors / type

Irradiation studies

• with protons at different energies

- test NIEL scaling hypothesis of radiation damage with energy
- test annealing cure has same effectiveness
- need data for radiation damage model
- 2 or possibly three energies
 - 150 MeV, 40 MeV, 20 MeV
 - would be nice also 1 GeV

• with beam and reactor neutrons

- test NIEL scaling hypothesis and annealing effectiveness is same as for protons
- need data for radiation damage model
- central reactor flux has both fast and slow neutron component
 - possibly different damage
 - irradiate in central reactor channel
 - both fast and slow
 - irradiate in peripheral channel
 - fast component suppressed

• at different levels of fluence

- \circ 10°, 101°, 1011 neq in one shot
- 10[°] repeated irradiation/annealing cycles

Energy (MeV)

10-1

10

10-2

200

100

10-9

10-8

10-7

10-6

10-5

Boards and sensors needed

performed for three levels of fluence

Boards and sensors needed

performed only for 10° fluence levels

developing mechanical layout, readout electronics for SiPM-ALCOR-based dRICH prototype

