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Event reconstruction
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High energy detectors detectors work as massive cameras recording collisions:
Event reconstruction = interpretation of the picture to identify the particles produced.



Track reconstruction
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In the 60s – 70s, bubble chambers take pictures of collisions.

At that time, the track parameter estimations were done by hand, from the photographs of the events 
seen in the bubble chamber.

First observation of 𝛺!, bubble chamber @ BNL in 1964.



Track reconstruction
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Nowadays, we use digital readout and algorithms.

Track reconstruction

Picture from: M. Elsing

Traditional methods:
sequential algorithms

ATLAS current inner detector ATLAS current inner detector

https://elsing.web.cern.ch/elsing/talks/OpenlabTrackingLecture2.pdf


LHC timeline
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Discovery of 
the Higgs boson

Today Start of the High 
Luminosity era

Start of data taking 12 pile-up 40 pile-up

High Luminosity phase
=

Increase of the pile-up
40            200



LHC High Luminosity upgrades

From ATLAS HL-LHC Computing
Conceptual Design Report

• The LHC upgrade: HL-LHC era
Physics run to start in 2029
Increase in event complexity:  𝝁 ≈ 𝟐𝟎𝟎
Increase in data taking rate
ATLAS detector upgrades: new Inner Tracking detector ITk included

Brings unprecedented 
challenges for software and 

computing.
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https://cds.cern.ch/record/2802918/files/LHCC-G-182.pdf


Machine learning applied to tracking
• Track reconstruction = CPU-intensive stage

ML techniques running on GPUs ? Raw data from tracking detectors are sparse data
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• Graph Neural Networks (GNNs): proof of principle by Exa.TrkX project
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https://arxiv.org/abs/1810.06111


Machine learning applied to tracking
• Track reconstruction = CPU-intensive stage

ML techniques ? Raw data from collisions are sparse data
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• Graph Neural Networks (GNNs): proof of principle by Exa.TrkX project
Method applied to TrackML data by L2IT and Exa.TrkX projects

These were proofs of principle that GNN 
tracking is a promising solution.

TrackML sample does not have:
Ø Secondary particles (𝜹 rays, 

nuclear interactions, …)
Ø Realistic simulation of strip 

detectors
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https://arxiv.org/abs/1810.06111
https://doi.org/10.1051/epjconf/202125103047
https://doi.org/10.1140/epjc/s10052-021-09675-8


Machine learning applied to tracking
• Time to apply it to ATLAS simulated samples
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Simulated sample
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• ATLAS simulated sample: 𝐭 ̅𝐭 𝐰𝐢𝐭𝐡 𝛍 = 𝟐𝟎𝟎 𝐚𝐭 𝒔 = 𝟏𝟒 𝑻𝒆𝑽
About 100k events available
About 10k particles per event
About 300k space-points per event

• Compared to TrackML
Number of space-points multiplied by ~ 3
No more parametrized simulation of trajectory (Geant 4)
Size of the luminous region : ~ 2 cm => ~ 20 cm



Simulated sample
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Schematic depiction of ITk

Strip subdetector: 1 space-point = 2 clusters 

Pixel subdetector: 1 space-point = 1 cluster
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• Define target particles
p! > 1 GeV
No secondaries
No electrons
At least 3 space-points in the detector

Dominated by soft interactions



Simulated sample
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Strip subdetector: 1 space-point = 2 clusters 

Space-points from two different particles

👻 Ghost space-point: accidental combination of strip clusters

charline.rougier@cern.ch | Brookhaven AIMS Series | 14th March

Dominated by soft interactions

• Define target particles
p! > 1 GeV
No secondaries
No electrons
At least 3 space-points in the detector



Graph representation of tracking data

Node = 1 space-point

Edge = connection between two nodes. 
Existence of edge = the 2 nodes could potentially represent 2 successive 

space-points on the same track.
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Graph construction is one of the most important parts of a GNN tracking pipeline: 
High efficiency is mandatory: so far lost edges means incorrect track reconstruction
Graph topology has a huge influence on the performance of a GNN model

O(300k) space-points in an event => fully connected graph 𝑂(1010) edges
Comprises unphysical connections

Key question of graph construction:

How de we choose the connections between nodes ?

Example with 19 hits in the (z,r) plane 
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Graph creation: learning the connections
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Metric Learning Module Map

All space-points belonging to the same target particles 
are learned by a Multi-Layer Perceptron (MLP) to be 
embedded into a space where they are close.

The path of a target particle is followed inside ITk to record 
all possible connections between triplet of silicon modules.

Connections record :

The Module Map is built using 90 000 events. It comprises 
1 242 665 connections.

Euclidian space N-dimensional space
learned by the MLP

1

2

3

4

5

6

1 → 2 → 3
2 → 3 → 5
3 → 5 → 6

Circle radius R
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Graph creation: learning the connections
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Metric Learning Module Map

Given a source node, edges between this node and all 
nodes within a radius R from the source are created.

Edges are created following the connections of the Module 
Map.

N-dimensional space
learned by the MLP Edges created

Circle radius R

No particular meaning of direction. Direction “inside-out” are given to edges.

1

2

3

1 → 2 → 3
2 → 3 → 5
3 → 5 → 6

O(3 million) edges O(billions) edges
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Graph creation: pruning the connections
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Metric Learning Module Map

Edges created during 
first step

Additional filtering is done using another MLP.

Edges kept

Additional filtering is done with geometric cuts.

1

2

3

1

2

3

Geometrical cuts automatically adjusted for each module triplet.

charline.rougier@cern.ch | Brookhaven AIMS Series | 14th March



Graph creation
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Metric Learning Module Map

Edges created during 
first step

Additional filtering is done using another MLP.

Edges kept

Additional filtering is done with geometric cuts.

1

2

3

1

2

3

O(1.3 million) edges
O(300k) nodes

~15k true edges
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Geometrical cuts automatically adjusted for each module triplet.



Graph edge construction efficiency

• Graph edge construction efficiency
High efficiency is a necessity: an edge lost during the graph construction can’t be recovered later.
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Module Map

Metric Learning

ATLAS Simulation Preliminary
 > 1 GeV

T
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1 10 210
 [GeV]

T
p

0.85

0.9

0.95

1

1.05

1.1

1.15

G
ra

ph
 e

dg
e 

co
ns

tru
ct

io
n 

ef
fic

ie
nc

y

Module Map

Metric Learning

ATLAS Simulation Preliminary

|<4h|

 > 1 GeV
T

 and soft interactions) pt = 200,  primaries (tñµá, t = 14 TeV, ts

In the following the module map is the method used to build graphs.
The graphs built have 100% efficiency (events have been used during the module map creation).
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Graph Neural Network model
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Encoders Decoder

Node
Encoder

Edge
Encoder

Embeds the features into 
a D−dimensional space

Interaction
Network

𝐻"
MLP Edge 

Block
MLP Node 

Block

Transforms the latent features
of each edge into a classification

score for each edge

𝐻"#$

Input graph Edges score

Number of message-passing 
L
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MLP

MLP MLP MLP

Learn geometric pattern of tracks 
(from DeepMind)

MLP

Edge
Decoder
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https://arxiv.org/abs/1612.00222


Memory consumption during training
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Memory consumption in ML framework
Large number of parameters: use of automatic differentiation in reverse mode
Advantage: fast 
Cost: large storage ∝ number of operations

With this GNN model
Our GNN acts on large graphs with features embedded in a large-dimensional space
Use of generic function available in ML framework

Exceed the memory of a GPU

Around 300 GB of memory needed to train the model
Largest GPU available on market have 80 GB of memory

How to train the GNN ?
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Memory consumption during training
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Memory management
Reduce precision from double to single (FP32)
TensorFlow Large Model Support (TFLMS) allows to temporarily swap tensors to the GPU host 
memory when they are not needed

GPU memory no longer a limitation

In the future 
TFMLS library no longer maintained L
Checkpointing method: don’t keep the gradient in memory but recompute them when needed.
On a larger time scale: use of dedicated kernel operation.

Training timing dominated by reading / writing -> trade-off between architecture complexity and training speed.
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GNN classifier
Naive classifier
Edge classification score s = 0.5

ATLAS Simulation Preliminary

using Module Map

 > 1 GeV
T

 and soft interactions) pt = 200, primaries (tñµá, t = 14 TeV, ts

Training the GNN

• Configuration of the GNN architecture
2 layers in each MLP
128−dimensional space parameters
8 message-passing iterations

• Training the GNN
400 graphs for training, 20 for validation
Amsgrad optimizer (variant of Adam)
Weighted binary Cross Entropy loss:

1.0 for true edges
0.1 for fake edges
0.0 for edges coming from non-target particles
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Cut at s = 0.5 on the edge classification score for illustration
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Computing resources during inference
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Prediction sample
100 events from TrackML
Graphs have similar size as those obtained with ITK

Quadro RTX 8000 GeForce RTX 2080 
Ti Gaming GPU

GPU memory capacity (GB) 48 11

Runtime mixed precision (16/32) 350 ms / event

Memory peak consumption 5.4 GB

No memory issue during prediction

Will also benefit from dedicated kernel => large factor of improvement expected from dedicated CUDA kernel

charline.rougier@cern.ch | Brookhaven AIMS Series | 14th March

Study on TrackML sample, 
without optimization.
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GNN edge-level performance
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ATLAS Simulation Preliminary

using Module Map

 > 1 GeV
T

 and soft interactions) pt = 200, primaries (tñµá, t = 14 TeV, ts

Efficiency and purity degradation in the central region.
What is the source of this inefficiency ?
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Cut at s = 0.5 on the edge classification score

Efficiency vs. 𝜂 Efficiency vs. 𝑝$ Purity vs. 𝜂
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1 2 3Investigation of the GNN edge-level performance

• Misclassification in the central region
Before building the tracks, the GNN classification must be good. We applied a cut at 𝑠 = 0.5 on the GNN edge 
classification score.
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ATLAS Simulation Preliminary

using Module Map
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T

 and soft interactions) pt = 200, primaries (tñµá, t = 14 TeV, ts

The largest misclassification arises in the barrel of the strip detector: 
Ø Lower spatial space-point resolution in this region,
Ø Presence of ghost (👻) space-points.
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ghost
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random-space point combinations

edges from electrons

non-successive space point from target particles

non-successive space point from non-target particles
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Investigation of the GNN edge-performance

• Origin of misclassified edges
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Non-fiducial particles = particles with 𝜂 > 4 or r > 26 cm
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Building track candidates

30

Connected 
component

Low cut on the edge score classification @0.1 : ~ 1.3M edges -> 30k edges

Zoom on part 
of a graph

Legend

Edge below threshold

Edge above threshold

Nodes same color = Nodes same particles
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Building track candidates
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Connected 
component

Walk-through
algorithm

(from TrackML)

No further filtering:
the track candidate is built

❌

killed

or

Legend

Edge below threshold

Edge above threshold

Nodes same color = Nodes same particles

Higher cuts on the edge score classification

+ 2 possibilities
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Track reconstruction matching criteria

• Evaluation of the track candidates 
No track fit is applied.

Evaluation done on t ̅t + PU.

• Matching criteria
Particle

🟢🟢🟢🟢🟢🟢🟢🟢🟢🟢🟢🟢

Track candidate 
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P%&'() > 0.5 P%&'() = 1
Track purity = 1

🟢🟢🟢🟢🟢🟢🟢🟢🟢🟢🟢🟢
Strict Matching

🟢🟢🟢🟢🟢🔴🔴🔴🔴
Standard matching
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GNN track reconstruction efficiency
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Matching to truth particles without track fit:
Standard matching
Strict matching
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Track candidate not matched to any particle = fake track
found to be 𝑂 10*+
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GNN for tracking
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Labeling

Graph
Segmentation

Hits Graph Edge Scores Track Candidates

1 2 3

GNN tracking achieved very promising results
We are very exciting to compare against CKF.

Part of the pipeline already available on ACTS J

See tutorial available here
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Available in ACTS
Not yet available, in progress

https://indico.cern.ch/event/1184037/contributions/5061741/attachments/2517438/4328280/exatrkx_tutorial.pdf
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Timing consideration
The target is to run the full pipeline in < 1 second.
Need to be fully run on GPU.

Pipeline step V100 GPU

Graph construction (metric learning) ~ 500 ms

Graph construction (module map) In progress 
target ~ 100 ms

GNN ~170 ms

Connecting component ~100 ms

TrackML timing (Similar graph size as for ITk)

How to improve: GPU kernels have dedicated operation for NN. But the GNN model is much complex with its 8 
message-passing operations and the way the memory is therefore handle. 
Using dedicated GNN kernels could only improve the timing, the memory consumption and the energy cost.
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(See this paper)

https://arxiv.org/pdf/2202.06929.pdf
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Public pipeline
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Metric 
Learning

Module
Map

or

Graph Neural
Network

Connected
Components

Connected
Components

+ Walkthrough

or
ାଵݒ ൌ ߶ሺ݁ ǡ ǡݒ ሻݒ

ଵݒ ଶݒ

ଷݒ ସݒ

݁ଵ ݁ଶ

݁ଷ ݁ସ

Graph
Construction

Edge
Labeling

Graph
Segmentation

Hits Graph Edge Scores Track Candidates

1 2 3

We plan to made the code accessible in a few weeks.

To run the pipeline, simulated sample could be obtain from ACTS using the OpenDataDetector, or using official 
sample from experiment.

You are invited to contribute
Contribution possibilities include:

Creation of dedicated GPU kernel for GNN
Faster graph construction
Track building stage 
Heterogeneous GNN architectures (strip detector)
Any part you fancy of GNN tracking

Many kinds of projects requiring 
different types of expertise.
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• Conclusion
First results using a GNN-based track reconstruction with ITk simulated data are 
promising and realistic.

• Prospects

Several studies are ongoing:
Finish integration ACTS and Athena
Fair comparison (timing and reconstruction performances) with Athena

and ACTS Combinatorial Kalman Filter
New GNN architectures to fix the degradation of efficiency in the strips
New track building stage, able to run on GPU

Thanks for your attention J
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Graph construction in the GNN tracking community

Lot of development is made on graph construction, mostly using machine learning technics.

Reinforcement learning 
environment TrackML

True hits

RL 
predictions

See presentation by Liv Helen Vage @CTD

Per sector breakdown

Cut detector into multiple regions to simplify the graph 
construction:

Very handy to start development
Not really a realistic solution
Can be found in proof of principle by Exa.TrkX
projects
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https://indico.cern.ch/event/1103637/contributions/4825737/attachments/2453806/4205246/Connecting%20the%20dots(1).pdf
https://arxiv.org/abs/1810.06111

