
The EIC Single Software Stack: 
Experiences from ePIC

Designing a Scientific Software Environment for the 2030s

Wouter Deconinck (University of Manitoba)

ePIC Computing & Software Working Group

Supported in part by NSERC SAPIN-2020-00049, SAPPJ-2021-00026.
With input from A. Bressan, M. Diefenthaler, C. Fanelli, T. Horn, S. Joosten, D. Lawrence, W. Li, J. Osborn, Z. Tu, T. Wenaus.



Milestones in the Electron-Ion Collider Development

2

● 2021: Large detector proposal development:
○ ATHENA: 3T solenoid, Si+MM+GEM tracker, imaging barrel EM cal, proximity-focused RICH
○ ECCE: 1.5T BaBar solenoid, Si+muRWell trackers, projective SciGlass EM cal, modular RICH

○ CORE: smaller effort focused on specific exclusive reaction channels at 2nd IR

● 2022: Selection of ECCE proposal as reference for EIC project detector
○ DPAP advisory panel: ECCE design achieves physics goals with lowest risk and cost
○ Successful integration of ATHENA and ECCE communities within two months(!)
○ Resulting in the formation of the EPIC detector collaboration

● 2023: Detector TDR for EIC Project CD-2/3a review (by January 2024)
○ 2022: technology selection for few areas where multiple options
○ 2023: finalization of design parametrization

ATHENA: A Totally Hermetic 
Electron-Nucleus Apparatus



Milestones in the Electron-Ion Collider Development
● 2016: EIC Software Consortium as part of EIC Generic R&D program

○ Activities included: interoperability and common interfaces between simulation components
○ Produce consensus-based community documents setting out vision for EIC software

● 2019: EIC User Group Software Working Group
○ Community endorsement of software as a valuable endeavor for the EIC user group
○ Focus on preparing the community for detector (proto-)collaborations

■ Coordinate during Yellow Report preparation
■ Coordinate during proposal development process

● 2022: EPIC Computing & Software and Simulation, Production & QA WGs
○ Single software stack decision process, together with EICUG SWG
○ Short term goals in organizing collaboration around single software stack: at best half of the 

collaboration will need to learn a lot of new things (at worst the whole collaboration).

● Overall goals: development of a community-supported full-lifecycle software 
stack for nuclear physics; prevent fragmentation; encourage modularity

Software



User-Centered Design at the EIC
● Annual “State of EIC Software” exercise (2021, 2022)

○ Quantitative survey with question consistency from year to year
○ Qualitative focus groups (~5 users each) to drill into recurring themes

● Development of user personas to highlight diversity of experiences



User-Centered Design:
● State of Software Survey
● Follow-up Focus Groups
● Develop Testing Community

Data and Analysis Preservation:
● User Analysis Code/Software Registry
● Tutorials on Reproducible Analyses

Discoverable Software:
● Single Point of Entry (~ key4hep)
● Feasible Option for > 80% of EIC 

Simulations and Analyses

Workflows:
● Template Repositories for Key Analyses
● Template Repositories and Validation 

Workflows

User-Centered Design at the EIC

“Key4hep: a framework for future HEP experiments and its use in FCC”, arXiv:2111.09874 [hep-ex]



Preliminary. Pending proofing and publication.



Geometry Description: DD4hep
Requirement: consistent geometry for simulations, reconstruction, data taking

● DD4hep: Abstraction layer for Geant4, TGeo, and other geometry consumers
● Geometry service from simulation through reconstruction and analysis
● Community-managed external project with large experimental user base



Data Model: podio, EDM4hep, EDM4eic
Use of standard interfaces between individual simulation, reconstruction, and 
analysis tasks creates modularity that allows easy exchange of components.

● podio (github.com/AIDASoft/podio)
○ Text-based definition of flat data models
○ Automatic C++ and Python interfaces
○ Stored inside ROOT files or other formats

● EDM4hep (github.com/key4hep/EDM4hep)
○ Defined using podio, based on LCIO and others
○ Designed as a standard for current/future HEP
○ Extensible with EIC-specific data types (EDM4eic)

https://github.com/AIDASoft/podio
https://github.com/key4hep/EDM4hep
https://github.com/eic/EDM4eic


Reconstruction Framework: JANA2
Requirement: Streaming-readout reconstruction of simulated or real data, 
enabling use of heterogeneous computing resources and of machine learning

● Factory model: only
reconstruct when not
in stock

● JANA2 used by GlueX
and streaming readout
development projects

● Algorithms depend on
data model only, but
JANA2 schedules and
orchestrates

STOCK

MANUFACTURE

in 
stock?

YES

NO

FACTORY

STOCK

MANUFACTURE

in 
stock?

YES

NO

FACTORY

STOCK

MANUFACTURE

in 
stock?

ORDER

PRODUCT
YES

NO

FACTORY
(algorithm)



Code Repositories and Continuous Integration
Code Repository:

Centralized collaborative development of all 
software components, for preservation of a full 
record of the development activity.

Several widely used options based on git:

● GitHub (github.com or enterprise instance)
● GitLab (gitlab.com or self-hosted instance)
● Others…

We use a GitHub organization, github.com/eic

Milestones and versioning, reproducibility, 
preservation, collaboration, code review

Continuous Integration/Deployment (CI/CD):

A strategy of automatic evaluation of software 
components, and of automatic deployment 
into testing and production environments.

Tightly integrated with repositories:
● GitHub
● GitLab

Or as a separate service.

We use GitLab instances triggered from GitHub.

Automation, quality control, workflows, 
deployment into production environments

10

https://github.com/eic


GitHub Pipelines
● ePIC: ~50+ jobs on GitHub
● Community-supported GitHub 

Actions infrastructure:
○ eic/trigger-gitlab-ci
○ eic/run-cvmfs-osg-eic-shell
○ AIDAsoft/run-lcg-view
○ cvmfs-contrib/github-action-cvmfs

● Inside these pipelines, all 
read-only interactions happen 
with CernVM global 
filesystem

11

https://github.com/eic/trigger-gitlab-ci
https://github.com/eic/run-cvmfs-osg-eic-shell
https://github.com/AIDASoft/run-lcg-view
https://github.com/cvmfs-contrib/github-action-cvmfs


12

EP
IC

12

Software for all EIC experiments - and beyond
● Nothing about the modular software toolkit 

design is unique to Detector 1

● We explicitly expect the toolkit to be used 
as a starting point for the Detector 2 
software toolkit

● Many design decisions were taken to 
explicitly allow collaboration and even 
algorithm sharing with other NP and HEP 
experiments

● The EPIC software stack could be used for 
future NP experiments, e.g. SoLID at 
Jefferson Lab (a fixed-target experiment!)

Component Modification for detector 2?

Geometry New configuration, can reuse many 
detector components

Data model Identical

Framework Can reuse/add to algorithms, only 
need different configuration

Code repository and CI Same resources could be used

Data analysis and preservation Same strategy can apply

AI and ML Same strategy can apply

Bottom line: detector 2 can hit the ground running!



Summary: EIC Software Stack
Geometry description with DD4hep enables consistent geometry between 
simulated data, real data, and their reconstruction.

A defined data model with podio, based on EDM4hep, allows seamless exchange 
of data and innovation in algorithm development thanks to modularity.

Reconstruction of data streams using JANA2 with modular algorithms enables 
running on heterogeneous computing systems to take advantage of parallelism.

These software components are applicable to all experiments that use Geant4 
simulations and event reconstruction. We aim for modularity and separation of 
function from code to allow other new experiments to join in these efforts.

By reusing existing tools, we can focus on what is unique to our EIC needs.


