

mRICH for ep

Xiaochun He Georgia State University

mRICH for ep

Xiaochun He Georgia State University

mRICH for ep

Xiaochun He Georgia State University

Physics Drives RICH Technology Choices

✓K/pi separation up to 10 GeV/c

✓ Limited available space in electron-going direction in EIC experiment

Hadron Kinematics at EIC (example)

- The maximum hadron momentum in the endcaps is close to the electron and ion beam energies, respectively.
- The momentum coverage need in the central barrel depends on the desired kinematic reach, in particular in Q² – important for QCD evolution, etc.
 - Weak dependence on beam energies

From eRD14 2018 Report by Pawel Nadel-Turonski

mRICH in ePIC

Detector Collaboration established in late July of 2022 hadronic calorimeters solenoid coils e/m calorimeters ToF, DIRC, **RICH** detectors MPG trackers MAPS tracker 8.5 m

ePIC is the brand-new name of the EIC Project

mRICH Review for ePIC

mRICH

4

mRICH in ePIC

ePIC is the brand-new name of the EIC Project Detector Collaboration established in late July of 2022

mRICH Review for ePIC

mRICH in ePIC (zoomed in) ePic

mRICH in ePIC (zoomed in)

See Alex Eslinger's presentation for details

mRICH in ePIC (zoomed in)

Attached to DIRC frame

2. Input information:

- Pertinent information on similar technology/design that is used by other experiments or R&D efforts (example references could be literature or conference talks).
- b. Prototypes and their tests: done so far, ongoing effort, future planning (with timelines); results from prototypes and their tests
- c. Simulation studies: already performed, ongoing and planned (with timelines); results from the simulations; particular care in (i) showing how realistic the parameters used in simulations are and (ii) reporting what is missing for a fully realistic simulation (backgrounds, specific event categories, ...) (iii) Does the simulation take into account the realistic response of the selected photosensors and related FEE?

3. Performances:

- a. Comparison of the present assessment of the Cherenkov PID detector performance compared with the YR requirements?
- b. Performance perspectives beyond the YR requirements (if any) ?
- c. Efficiency figures: single particle Pi/Kaon/Proton identified as Pi/Kaon/Proton as a function of the truth momentum in a 3x3-panel figure?
- d. Please quantify the performance for electron/hadron separation
- e. Active area or /dead area as 2D function of eta and phi; and comment on the edge effects?
- f. Performance or potential as ToF detector, providing both timing resolution and acceptance coverage in eta and phi.
- g. Under the coordination of the SIDIS working group, provide Kaon Purity in the kinematic region of (x. .. Q2...) via parameterized hadron PID performance.

4. Radiator

- a. Status of radiator selection
- b. Status of the radiator development and related potential issues?
- c. Perspectives of radiator mass production and timelines for the production period?

Sensors and FEE:

- a. Status of photosensor selection (a single consolidated option, more options under consideration); please provide photo sensor and pixel segmentation characteristics?
- b. Status of the sensor development and related potential issues?
- c. Perspectives of sensor mass production and timelines for the production period?
- d. Status of FEE selection (a single consolidated option, more options under consideration)?
- e. Characteristics of the ASIC and FEEs considered?

To be addressed in details

To be addressed with large uncertainties

Not included in this review X

- a. Status of the proposed detector integration into the current baseline detector?
 - z-space and effect to tracking: in coordination with the tracking DWG, produce backward momentum resolution for the tracker that fit into the z-spaced allowed by the proposed RICH detector
 - Material effect to backward EMCal: in coordination with the calorimeter DWG, produces electron lineshape in the backward EMCal with the proposed RICH detector in front.
- b. Status of the **design** of the **electrical/electronic infrastructure** (channels, power supplies, heat, rate)?
- c. Cooling strategies?
- 7. Workforce:
 - List of groups engaged in the proposed detectors and of other groups potentially interested;
 - Workforce needed with timelines and qualification of the required professional profiles; please, include also physicists needed for dedicated simulation studies;
 - Available workforce (specifying: granted, expected, possible) by the groups proposing the detector;
- 8. Cost and scheduling:
 - up-to-date cost estimate for the different components and expenditure categories;
 - b. In-kind contributions (specifying: granted, expected, possible).
 - c. Envisioned schedule for full scale production
- 9. Envisioned risk and risk mitigation strategy

mRICH Review for ePIC

Presentation Plan

Day-1 (March 20, 2023)

- Introduction (#2a, 2b, 2c) Xiaochun He
- Recent R&D results (#2b, 2c) Murad Sarsour
- Sensors and readout (#5)– Rachel Montgomery

Day-2 (March 21, 2023)

- \circ Engineering design and integration (#6) Alex Eslinger
- New prototype design (#6) Alex Eslinger
- Workforce, cost & schedule, and risk mitigation (#7, 8, 9) Xiaochun He

mRICH – Working Principle I (#2a)

mRICH – Working Principle I (#2a)

mRICH – Working Principle II (#2a)

- 9 GeV/c pion beam incident at third quadrant (star) in simulation
- Ring image is shifted toward the central region on the sensor plane

mRICH – Working Principle II (#2a)

mRICH Prototyping Studies (#2b)

Objectives of Prototyping Studies

The first mRICH prototype was developed in 2015 and tested at Fermilab in 2016. The goal was to verify its working principle. The results were published in 2017 in NIM A.	The third test Jlab in 2021 v prototype tog GEM trackers test is to dete photon angle	t was performed at with the 2nd gether with a pair of s. The focus of this ermine mRICH single e resolution.	2024	
2015		2021		
The second mRICH prototype was designed with improvement of optical components and its integration with photosensor readout. The test was performed in 2018 at Fermilab.		3rd prototype be The focuses inclu- plane location a (thickness and the	3rd prototype beam test is planned. The focuses include optimizing focal plane location and Aerogel choice (thickness and the index of refraction)	

Objectives of Prototyping Studies Technology evolution

	The first mRICH prototype was developed in 2015 and tested at Fermilab in 2016. The goal was to verify its working principle. The results were published in 2017 in NIM A		The third test wa Jlab in 2021 with prototype togeth GEM trackers. Th test is to determ photon angle res	is performed at the 2nd ner with a pair of ne focus of this ine mRICH single solution.	
		201	8	20	24
2015			2021		
	The second mRICH prototype was designed with improvement of optical components and its integration with photosensor readout. The test was performed in 2018 at Fermilab.		3rd prototype beam test is planned. The focuses include optimizing focal plane location and Aerogel choice (thickness and the index of refraction)		

1st mRICH Prototype Beam Test – Proof of Working Principle ePi

C.P. Wong et. al. NIM A871 (2017) 13-19

mRICH Review for ePIC

2nd mRICH Prototype Beam Test (lens focusing and SiPM sensor)

INFN Group provided readout

mRICH Review for ePIC

2nd mRICH Prototype Beam Test (lens focusing and SiPM sensor)

INFN Group provided readout

¹st & 2nd Beam Test Comparison (120 GeV Proton Beam) ePic

The 1st test beam result verified mRICH working principle and validated simulation

Images from 120 GeV

Proton beam

1st mRICH prototype was tested at Fermilab Test Beam Facility in April 2016

500

400

300

200

100

40 x (mm)

20

1st & 2nd Beam Test Comparison (120 GeV Proton Beam) ePic mRICH

The 1st test beam result verified mRICH working principle and validated simulation

1st mRICH prototype was tested at Fermilab Test Beam Facility in April 2016

Simulated Images

Using GEANT4

electronic components; b) longer focal length (6"); c) 3mm x 3mm photosensors.

2nd mRICH prototype was tested at Fermilab Test Beam Facility in June/July 2018

Images from 120 GeV

mRICH Review for ePIC

1st & 2nd Beam Test Comparison (120 GeV Proton Beam) ePic

The 1st test beam result verified mRICH working principle and validated simulation

mRICH Review for ePIC

mRICH Test at JLab

To quantify single photon angle resolution and Aerogel edge effects. This is one of the milestones achieved for the eRD101 Project R&D (FY22).

mRICH Test Setup in Hall D at JLab

mRICH Test Setup in Hall D at JLab

mRICH Test Setup in Hall D at JLab

Single photon angle resolution (JLab test results)

Murad Sarsour Georgia State University

The end of the 1st presentation

Backups

mRICH Key Features

X. He at RICH2022

mRICH Key Features

X. He at RICH2022

- ✓ Longer Fresnel focal length
- $\checkmark~$ Photosensors with smaller pixel size

✓ Longer Fresnel focal length
✓ Photosensors with smaller pixel size

