

Mechanical Design, Integration, Aerogel

ePIC pfRICH:

- Rapid design progression while maintaining CAD and Simulation agreeance
- Utilization of existing design methodologies where possible
- Services are being developed concurrently to be added into the final model

Alex Eslinger (JLAB) Alexander Kiselev (BNL)

Charge Topics addressed in this Talk

6. Integration:

- 1. Status of the proposed detector integration into the current baseline detector?
 - z-space and effect to tracking: in coordination with the tracking DWG, produce backward momentum resolution for the tracker that fit into the z-spaced allowed by the proposed RICH detector
 - 2. Material effect to backward EMCal: in coordination with the calorimeter DWG, produces electron lineshape in the backward EMCal with the proposed RICH detector in front.
- 2. Status of the design of the electrical/electronic infrastructure (channels, power supplies, heat, rate)?
- 3. Cooling strategies?

4. Aerogel Radiator

- 1. Status of radiator selection
- 2. Status of the radiator development and related potential issues?
- 3. Perspectives of radiator mass production and timelines for the production period?

Mechanical Design

Design Progress

Fully implemented in GEANT4

Aerogel Wall Details

- Material: Carbon Fiber Disc/Dividers (~0.5mm thickness).
- Dimensions:
 - Outer Radius -> ~62.5cm
 - Inner Dimension -> Beam pipe flange + 5mm clearance for installation.
- More Details:
 - Thin clear filament to be strung across the grid to hold tiling into place. (Detail not shown; conceptual)
 - Estimated weight: ~1.8kg

Containment Walls

- Material: Carbon Fiber Sandwich Structure with PEEK rings around the edge
- Dimensions:
 - Outer Radius -> ~63.8cm
 - Inner Dimension -> Beam pipe flange + 5mm clearance for installation.
- More Details:
 - Front Wall and Inner Wall thickness = ~1/4" (6.35mm)
 - Outer Cylindrical Wall thickness = ~1/2" (12.7mm)
 - Aluminum sealing rings around outside perimeter are 1/2" (12.7mm) in size
 - PEEK around beam pipe are 1/4" (6.35mm) in size
 - Estimated Total (with hardware): ~10.7 kg

Outer Conical Mirror System

- Material: Carbon fiber sandwich with reflective surface (~1/4" [6.35mm] thick)
- Dimensions:
 - Upstream Radius: ~62.4cm
 - Downstream Radius: 54cm
- More Details:
 - Intended to be segmented into 8 sections radially
 - Mounting points will be provided by machinable foam pads around the circumference
 - Current thought for foam is polyurethane foam available in different densities
 - 3 mounting points per mirror segment
 - Mirrors have a tapered section as they approach the aerogel to maximize internal space
 - Weight per mirror (total): ~0.3kg (~2.5kg)

Inner Conical Mirror System

- Material: Carbon fiber sandwich with reflective surface (~1/4" [6.35mm] thick)
- Dimensions:
 - Upstream Radius: 66 mm
 - Downstream Radius: 12 cm
- More Details:
 - Mirror cut around the inner containing wall creating a saddle shape
 - Mounting points will be provided by machinable foam pads around the inside circumference
 - Current thought for foam is a polyurethane foam available in different densities
 - Weight: ~0.4kg

Backward RICH Review in ePIC

Sensor Wall/Grid

- Material: Aluminum (1/2" [12.7mm] maximum thickness)
- Dimensions:
 - Outer Radius -> ~63.8cm
 - Inner Dimension -> Beam pipe flange + 5mm clearance for installation.
- More Details:
 - 68 Sensors; 12cm x 12cm
 - Estimated weight for Aluminum Disc = ~10.7kg
 - Countersunk fasteners along perimeter allow bolting and sealing to center cylinder section of the containment structure.
 - Intended to be machined from one piece of aluminum for rigidity
 - Exterior frames hold in individual sensors
 - Allows for mounting of the pipes
 - Creates a more rigid structure
 - Intended to be standard 1/8" (3.175mm) thick material

Sensor Wall/Grid (Cont'd)

Integration

Detector Assembly

Detector Assembly (Cont'd)

Detector Installation

- Backwards EMCAL is downstream of pfRICH and must be removed in the assembly hall due to space constraints
- pfRICH can collaborate with backwards EMCAL for tooling and railings
 - Utilize the same railings for both detectors
 - Backwards EMCAL estimated at 3T; pfRICH estimated at 100kg
- Install the detector in one piece on the tooling (to be designed)
- Utilize the aluminum sensor plate as a fixturing location for the tooling

Obtained from J. Bettane's EIC Calorimetry Review slide on December 6-7, 2022.

Detector Support

- Propose we add two additional rings into the DIRC structure at the specified locations.
- Conical mounting mechanism on the upstream side
- Bolt through into the half-inch circumferential ring on the downstream side
- Easily scalable depending on final requirements

Upstream Conical Mounts

Proposed additional support rings

Design/Integration Summary

- Design has progressed rapidly from last October until now and ongoing collaboration means that the CAD design agrees with simulation software
- Sub-assemblies are developing details that can be translated toward a final design
- Assembly plans, installation, and support structures have been conceptualized and are ready to be developed further
- Industry is starting to give design feedback as we reach out to discuss manufacturing options during market research

Services

17

Low Voltage System

by Saverio Minutoli (INFN Genova)

- Each Sensor
 - 4EICROCs x 256chs = 1024chs/sensor → @3mW/ch → ~3W/se
- Whole detector
 - 68sensors x 2.5A → 170A@1.2V → 204W
 - Add 20% extra current for the ancillary electronic components
 - 170A + 20% = 204A@1.2V → 245W
 - Add 20% extra current for safety margin
 - 204A + 20% = <u>245A@1.2V</u> → <u>294W</u>

Fully costed; on-detector part implemented in GEANT as an effective copper layer

High Voltage System

- CAEN HV mainframes and stackable HV modules
- CERN-approved Radiall connectors

by Saverio Minutoli (INFN Genova) and AK (BNL)

Fully costed; on-detector part implemented in GEANT as an effective copper layer

Gas System

Shanmuganathan (BNL)

- > Assume nitrogen only configuration
- > One volume exchange per hour at a pressure 2-4 mbar

Fully costed

Cooling System

Fully costed; on-detector part implemented in GEANT as shown

Aluminum

1" X 1"

22

6.1.1 Backward Tracker Angular Resolution

- Used official ePIC software (DD4HEP/EicRecon), Bryce Canyon geometry
- Procedure: \geq
 - Use particle gun (pions) at fixed momentum, theta and azimuthal settings \succ
 - Project the reconstructed tracks to plane at z = -1200 mm \geq
 - Parameterize angular resolutions ($\Delta \theta$ and $\Delta \phi$) as a function of { η , p}
 - Apply as additional smearing to the Cherenkov angle resolution in Delphes files \succ

6.1.2 pfRICH Material Effect to Backward EmCal

pfRICH GEANT implementation imported in ePIC framework as a GDML file
Material implemented to the best of our knowledge (vessel, HRPPDs, cooling system, etc)

Aerogel

4.1 Proposed configuration

Simulations were performed using parameterizations of Belle II

- <n>~ 1.045, RINDEX / ABSLENGTH / RAILEIGH as provided
- > 2.5cm thick tiles, three radial bands, trapezoidal shape (3 varieties), ~19 cm size
- > Assume water jet shaping up (tile sides of poor optical quality) -> opaque separators
- > Options for the implementation in ePIC:
 - > 2.5 cm thick Belle II type tiles possible (as communicated by the manufacturer)
 - Can almost certainly use J-PARC type (~14 cm size, <n> ~ 1.040) -> four radial bands
 - > Should be able to go down to $<n> \sim 1.030$ and ~ 3.0 cm thickness if needed
 - > Would consider (much) smaller tiles if they can be produced with transparent sides

Required quantity: 42 tiles total (+ spares)

4.2 / 4.3 R&D, QA, Cost and Schedule

- Meeting with Makoto Tabata (Chiba University & Aerogel Factory Co., Ltd) set up by the EIC project in December 2022
- Follow up communication between Makoto, Marco Contalbrigo (INFN Ferrara) & AK
 - > Quote for the first few types of tiles with $<n> \sim 1.020 \& 1.030$ received
 - Production is expected to start in April 2023
 - ➢ Full scale order for pfRICH: ~50 tiles, cost estimate included in the provided Excel sheet
 - > Two months for a test production, then 5-6 months for the whole order
 - > By now Makoto Tabata became a member of the pfRICH DSSC
- > An aerogel QA test station will be set up at Temple

Summary of Services / Aerogel

- pfRICH Low Voltage, High Voltage, Gas and Cooling System layout is defined
- All these services are costed, and adequately described in a CAD model and in the GEANT simulations
- Aerogel type is selected, and consistently used in the Monte-Carlo simulations
- Test samples will be received by Fall 2023

