

pfRICH Performance Study in ePIC

Chandradoy Chatterjee (INFN TS) Alexander Kiselev (BNL) Kong Tu (BNL)

Homework #1

Acceptance x Efficiency (N_{pe} > 3)

YR requirement is to have 3σ separation of π/k up to 7 GeV/c which translates to an angular resolution better than 2.43 mrad.

- At 7 GeV/c, if N_{pe} = 4, angular resolution is ~4.5 mrad / sqrt(4) = 2.25 mrad
- Meets the YR requirement
- Cutting further on will balance between the efficiency and resolution.

Homework #2

Rayleigh scattering

Scattering length parameterization as a function of wavelength: <u>Bellell.xml</u> <u>Materials.cc</u>
GEANT takes care about ~(1 + cos^2(theta)) dependency

 \geq One turns Rayleigh scattering (and absorption) off -> no stray photons, <N_{pe}> ~ 25

Forward scattering

NIM A876 (2017) 168 [CLAS12 R&D]: 3cm thickness, n ~ 1.05 NIM A556 (2006) 140 [LHCb R&D]: 5cm thickness, n ~ 1.03

> In both cases effect is measured on the level of <1 mrad (compare to pfRICH σ_{SPE} ~ 4.5mrad)

We have no means readily available to model this in GEANT
Can be added at the reconstruction stage, same way we apply ePIC tracker angular resolutions

Parametrizations of Belle II aerogel #1

Simulation Outcome

Wavelength distribution is dictated by the cut from the acrylic filter.

 \rightarrow Average wavelength of the distribution is compatible with average (n-1)

LAPPD Na₂KSb photocathode peak QE measurements

A. Lyashenko (Incom), LAPPD Workshop #1, March 2022

LAPPD Na₂KSb photocathode QE(λ) measurements

> pfRICH simulations:

- \succ QE(λ) curve as shown
- Peak QE rescaled to 30%
- > Apply extra safety cff 0.7
- -> Conservatively assume a peak PDE of 21%

Backup

Effect of scattering and absorption: effect in Npe

Backward RICH Review in ePIC

Scanning around a small region allows us to visualize the fact that the aerogel ribs are shadowing photon and contributing to the dead area. However, in the immediate vicinity, we are capable to recover the acceptance.

Acceptance x Efficiency (N_{pe} > 0)

Acceptance x Efficiency ($N_{pe} > 5$)

Acceptance x Efficiency (N_{pe} > 10)

