Azimuthal asymmetries in *D*-meson and jet production at the EIC

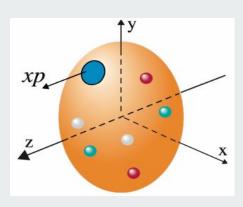
Shaikh Khatiza Banu

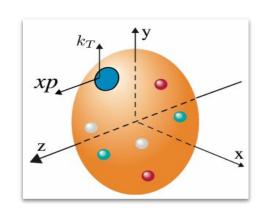
In collaboration with

Asmita Mukherjee, Amol Pawar, and Sangem Rajesh

CFNS-POSTDOC MEETING

Parton distribution functions





PDFs - gives the probability to find parton of longitudinal momentum fraction x within nucleon.

1D information about the partons f(x)

Collinear factorization

Universal PDFs

 $l \ p
ightarrow l \ X$ Deep inelastic scattering (DIS)

within the nucleon. **3D** information about the partons $f(x, k_{\perp})$

TMD PDFs - gives the probability to find parton of

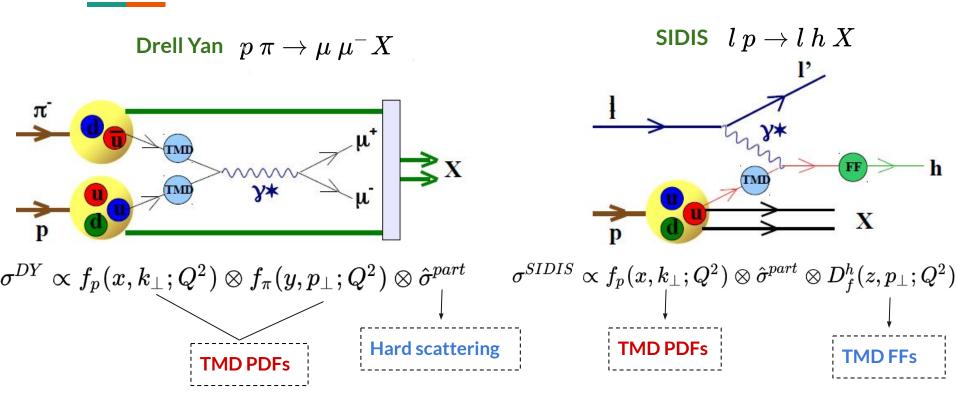
longitudinal momentum fraction **x** and transverse momenta k_{\perp}

TMD factorization

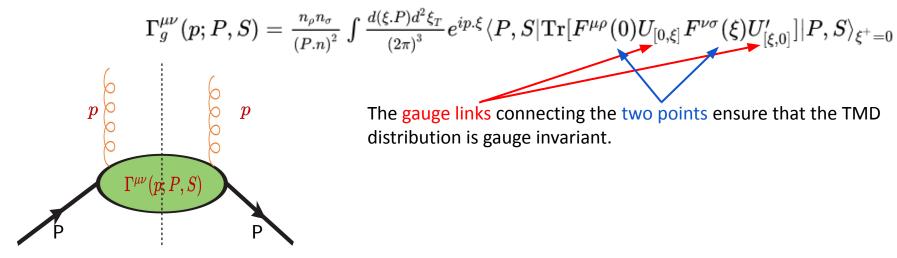
Non-Universal PDFs

l~p
ightarrow l~h~X SIDIS $p~p
ightarrow l^+ l^- X$ Drell Yan

TMDs in Drell Yan and SIDIS process



Gluon Correlator



The gauge links connecting the two points ensure that the TMD distribution is gauge invariant.

Gauge links are path ordered exponential connecting the field strength tensors along a definite path.

$$U^C = \mathcal{P} \exp[ig \int_C dz^\mu \mathcal{A}_\mu(z)]$$

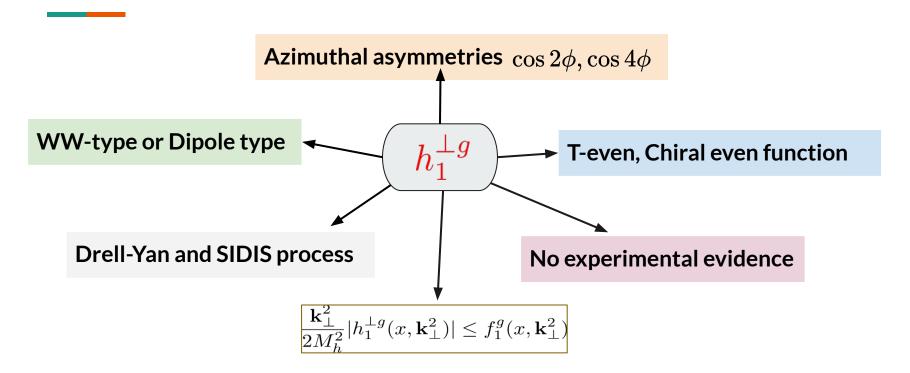
- Simplest possible configurations are ++ or -- and +- or -+.
- In the literature related to small-x physics, these are known as Weizsacker-Williams (WW) and Dipole distributions respectively.

Gluon TMDs

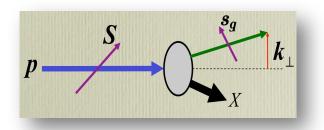
$$\Phi^{\mu
u}(x,q_T) = \int rac{d\xi^- d^2 \xi_T}{M_p(2\pi)^3} e^{iq\cdot \xi} \langle P,S | {
m Tr}[F^{+\mu}(0) U^{[C]} F^{+
u}(\xi) U^{'[C]}] | P,S
angle_{\xi^+=0}$$

		Gluon polarization			
		Unpolarised	Circularly	Linearly	
Target polarization	Unpolarised	f_1^g	Helicity	$h_1^{\perp g}$ Linearly (oolarized
	Longitudinal		g_{1L}^g	$h_{1L}^{\perp g}$ Kotzinin	
	Transverse	$f_{1T}^{\perp g}$	g_{1T}^g	$h_{1T}^g, h_{1T}^{\perp g}$	
		Sivers function	worm-gear	transversity Pretze	losity

Linearly polarized gluon distribution function



Gluon Sivers function



$$S \cdot (p \times k_{\perp})$$
: Sivers effect

- In 1990 Sivers proposed that SSA can be explained by allowing the correlation between transverse momentum of parton and polarization direction of its parent hadron.

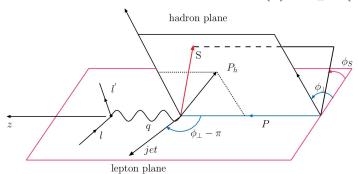
 D. Sivers, PRD 41, 83(1990)
- ☐ Sivers function is Time-reversal odd function.
- Sivers function in DY is equal in magnitude but opposite in sign compared to Sivers function in SIDIS.

$$\Delta^N f_{g/p^{\uparrow}}(x, \mathbf{k}_{\perp})|_{\text{DY}} = -\Delta^N f_{g/p^{\uparrow}}^{\perp}(x, \mathbf{k}_{\perp})|_{\text{SIDIS}}$$

- In some models, it is related to the orbital angular momentum. A, Bacchetta and M, Radici, PRL 107, 212001 (2011)
- lepton-pair production, back-to-back jet production.

D-meson and jet production at EIC

$$e(l) + p^{\uparrow}(P)
ightarrow e(l') + D(P_h) + \mathrm{jet} + X$$



$$\gamma^*(q) + g(k)
ightarrow c(p_1) + ar{c}(p_2)$$

Kinematic variables:

$$Q^2=-q^2$$

Virtuality of photon

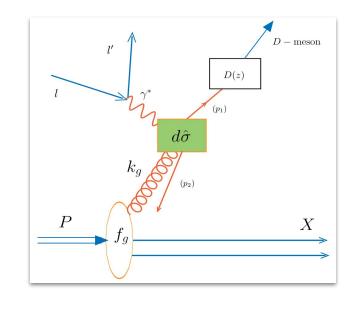
$$= \frac{Q^2}{2P \cdot q}$$

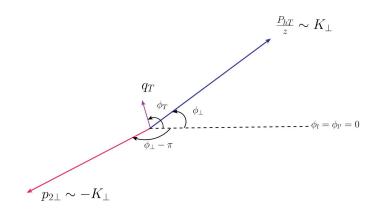
Bjorken variable

$$y=rac{P\cdot q}{P\cdot k}$$

$$s = (l+P)^2$$

 $rac{P \cdot q}{P \cdot k}$ inelasticity $+ P)^2$ centre of mass energy $P \cdot P_h$





$$\mathbf{q}_{T}^{}=rac{\mathbf{P}_{\!hT}^{}}{z}+\mathbf{p}_{\!2\perp}^{}$$
 $\mathbf{K}_{\!\perp}^{}=rac{rac{\mathbf{P}_{\!hT}^{}}{z}-\mathbf{p}_{\!2\perp}^{}}{2}$

• In the case where $|\mathbf{q}_T| \ll |\mathbf{K}_{\perp}|$, the *D*-meson and jet are almost back to back in the transverse plane.

Assuming the TMD factorization holds, the total differential scattering cross-section can be written as

$$egin{aligned} d\sigma^{ep o e+D+ar{c}+X} &= rac{1}{2s} rac{d^3 \mathbf{I'}}{(2\pi)^3 2E_{l'}} rac{d^3 \mathbf{P}_{_h}}{(2\pi)^3 2E_h} rac{d^3 \mathbf{p}_{_2}}{(2\pi)^3 2E_2} \int dx_g \, d^2 \mathbf{k}_{_{\perp}g} \, dz \, (2\pi)^4 \, \delta^4(q+k-p_1-p_2) \ & imes rac{1}{Q^4} L^{\mu
u}(l,q) \, \Phi_g^{
ho \sigma}(x_g,\mathbf{k}_{_{\perp}g}) \, H_{\mu
ho}^{\gamma^* g o car{c}} \, H_{
u \sigma}^{*;\gamma^* g o car{c}} \, D(z) \, J(z) \end{aligned}$$

Assuming the TMD factorization holds, the total differential scattering cross-section can be written as

$$egin{align*} d\sigma^{ep o e+D+ar{c}+X} &= rac{1}{2s}rac{d^3\mathbf{I}}{(2\pi)^32E_{l'}}rac{d^3\mathbf{P}_{\!_h}}{(2\pi)^32E_h}rac{d^3\mathbf{P}_{\!_2}}{(2\pi)^32E_2}\int dx_g\,d^2\mathbf{k}_{\!ot g}\,dz\,(2\pi)^4\,\delta^4(q+k-p_1-p_2) \ & imesrac{1}{Q^4}L^{\mu
u}(l,q)\,\Phi_g^{
ho\sigma}(x_g,\mathbf{k}_{\!ot g})\,H_{\mu
ho}^{\gamma^*g o car{c}}\,H_{
u\sigma}^{*;\gamma^*g o car{c}}\,D(z)\,J(z) \ & \end{split}$$

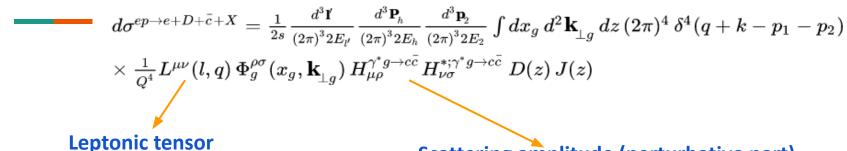
The gluon correlator (non-perturbative) for unpolarized proton is given as

$$\Phi_U^{
ho\sigma}(x_g,\mathbf{k}_{\perp g}) = rac{1}{2x_g}igg[-g_T^{
ho\sigma}f_1^g(x,\mathbf{k}_{\perp g}^2) + igg(rac{k_{\perp g}^
ho}{M_P^2} + g_T^{
ho\sigma}rac{\mathbf{k}_{\perp g}^2}{2M_P^2}igg)igg[h_1^{\perp g}(x,\mathbf{k}_{\perp g}^2)igg]$$
 Unpolarized gluon distribution

The gluon correlator for transversely polarized proton is given as

$$egin{align*} \Phi_T^{\mu
u}(x_g,\mathbf{k}_{\perp g}) &= rac{1}{2x_g}igg\{ -g_T^{\mu
u}rac{\epsilon_T^{
ho\sigma}k_{\perp g
ho}S_{T\sigma}}{M_p}f_{1T}^{\perp\,g}(x_g,\mathbf{k}_{\perp g}^2) + i\epsilon_T^{\mu
u}rac{k_{\perp g}\cdot S_T}{M_p}g_{1T}^g(x_g,\mathbf{k}_{\perp g}^2) \ &+ rac{k_{\perp g
ho}\epsilon_T^{
ho\{\mu}k_{\perp g}^{
u\}}}{2M_p^2}rac{k_{\perp g}\cdot S_T}{M_p}h_{1T}^{\perp g}(x_g,\mathbf{k}_{\perp g}^2) - rac{k_{\perp g
ho}\epsilon_T^{
ho\{\mu}S_T^{
u\}} + S_{T
ho}\epsilon_T^{
ho\{\mu}k_{\perp g}^{
u\}}}{4M_p}h_{1T}^g(x_g,\mathbf{k}_{\perp g}^2) iggr\} \end{split}$$

Assuming the TMD factorization holds, the total differential scattering cross-section can be written as



$L^{\mu u} = e^2 rac{Q^2}{v^2} \Big[- (1 + (1-y)^2) g_T^{\mu u} + 4 (1-y) \epsilon_L^\mu \epsilon_L^ u + 4 (1-y) \left(\hat{l}_\perp^\mu \hat{l}_\perp^ u + rac{1}{2} g_T^{\mu u} ight)$

$$+ \, 2(2-y)\sqrt{1-y} \left(\epsilon_L^\mu \, {\hat l}_\perp^{\,
u} + \epsilon_L^
u \, {\hat l}_\perp^{\,\mu}
ight) \,
brace$$

Scattering amplitude (perturbative part)

$$q$$
 p_1
 p_2
 p_2

 $\gamma^*(q)+g(k) o c(p_1)+ar c(p_2)$

Feynman diagram for D-meson production in SIDIS process

Assuming the TMD factorization holds, the total differential scattering cross-section can be written as

$$d\sigma^{ep
ightarrow e+D+ar{c}+X}=rac{1}{2s}rac{d^3\mathbf{f}}{(2\pi)^32E_{l'}}rac{d^3\mathbf{p}_{_{\!\! h}}}{(2\pi)^32E_{_{\!\! h}}}rac{d^3\mathbf{p}_{_{\!\! 2}}}{(2\pi)^32E_{_{\!\! 2}}}\int dx_g\,d^2\mathbf{k}_{_{\perp}g}\,dz\,(2\pi)^4\,\delta^4(q+k-p_1-p_2) \ imes rac{1}{Q^4}L^{\mu
u}(l,q)\,\Phi_g^{
ho\sigma}(x_g,\mathbf{k}_{_{\perp}g})\,H_{\mu
ho}^{\gamma^*g
ightarrow car{c}}\,H_{
u\sigma}^{*;\gamma^*g
ightarrow car{c}}\,D(z)\,J(z)$$

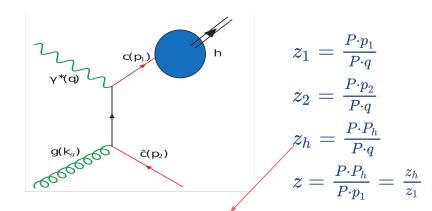
$$D_{D/c}(z,\mu) = rac{Nz(1-z)^2}{\left[(1-z)^2+\epsilon z
ight]^2}$$

$$\mu=m_c=1.5~{
m GeV}$$

$$N = 0.694$$

$$\epsilon = 0.101$$

Fragmentation function (non-perturbative part)



energy fraction of the virtual photon taken by the observed *D*-meson in protons rest frame

$\cos 2\phi_T$ asymmetry

The cross-section as the sum of unpolarized and transversely polarized cross-sections,

$$rac{d\sigma}{dQ^2 dy dz_h d^2 \mathbf{q}_{r} d^2 \mathbf{K}_{-}} \equiv d\sigma(\phi_S,\phi_T) = d\sigma^U(\phi_T,\phi_{\perp}) + d\sigma^T(\phi_S,\phi_T)$$

The cross-section for the unpolarized proton is written as the linear sum of $\cos \phi_{\perp}$ and $\cos \phi_{T}$ harmonics convoluted with the fragmentation function,

$$egin{aligned} d\sigma^U &= \mathcal{N} \int dz igg[ig(\mathcal{A}_0 + \mathcal{A}_1 \cos \phi_\perp + \mathcal{A}_2 \cos 2\phi_\perp ig) f_1^g(x, \mathbf{q}_T^2) + ig(\mathcal{B}_0 \cos 2\phi_T + \mathcal{B}_1 \cos (2\phi_T - \phi_\perp) + \mathcal{B}_2 \cos 2(\phi_T - \phi_\perp) ig) \ &+ \mathcal{B}_3 \cos (2\phi_T - 3\phi_\perp) + \mathcal{B}_4 \cos (2\phi_T - 4\phi_\perp) ig) rac{\mathbf{q}_T^2}{M_p^2} \, h_1^{\perp \, g}(x, \mathbf{q}_T^2) igg] \, D(z) \end{aligned}$$

The weighted azimuthal asymmetry, gives the ratio of specific gluon TMD over unpolarized f_1^g and is defined as

$$A^{W(\phi_S,\phi_T)}\equiv 2\,rac{\int d\phi_S\,d\phi_T\,d\phi_\perp\,W(\phi_S,\phi_T)\,d\sigma(\phi_S,\phi_T,\phi_\perp)}{\int d\phi_S\,d\phi_T\,d\phi_\perp\,d\sigma(\phi_S,\phi_T,\phi_\perp)}$$

The $h_1^{\perp\,g}$ gluon TMD could be extracted by studying the following two azimuthal asymmetries

$$A^{\cos 2(\phi_T - \phi_\perp)} = rac{{f q}_T^2}{M_p^2} \, rac{\int dz \, {\cal B}_2 \, D(z) \, h_1^{\perp \, g}(x, {f q}_T^2)}{\int dz \, {\cal A}_0 \, D(z) \, f_1^g(x, {f q}_T^2)}$$

 $A^{\cos 2\phi_T} = rac{{f q}_T^2}{M_\pi^2} \, rac{\int dz \, {\cal B}_0 \, D(z) \, h_1^{\perp \, g}(x, {f q}_T^2)}{\int dz \, {\cal A}_0 \, D(z) \, f_1^g(x, {f q}_T^2)}$

Upper bound

- → Linearly polarized gluon distribution satisfies the positivity bound
- → Upper limit of asymmetry obtained when this bound is saturated

$$egin{aligned} rac{\mathbf{q}_T^2}{2M_p^2} \, |h_1^{\perp \, g}(x, \mathbf{q}_T^2)| & \leq f_1^g(x, \mathbf{q}_T^2) \ & rac{|q_T|}{M_p} \, |f_{1T}^{\perp \, g}(x, q_T^2)| \leq f_1^g(x, q_T^2) \ & rac{q_t^2}{2M_p^2} |h_1^{\perp g}(x, q_t^2)| = f_1^g(x, q_t^2) \end{aligned}$$

$$A^{\cos2\phi_T} = rac{\mathbf{q}_T^2}{M_n^2} \, rac{\int dz \, \mathcal{B}_0 \, D(z) \, h_1^{\perp \, g}(x, \mathbf{q}_T^2)}{\int dz \, \mathcal{A}_0 \, D(z) \, f_1^g(x, \mathbf{q}_T^2)} \hspace{1.5cm} A^{\cos2\phi_T}
ightarrow U = rac{2*|\mathbb{B}_0|}{\mathbb{A}_0}$$

$$A^{\cos 2(\phi_T - \phi_\perp)} = rac{q_T^2}{M_n^2} \, rac{\int dz \, {\cal B}_2 \, D(z) \, h_1^{\perp \, g}(x,q_T^2)}{\int dz \, {\cal A}_0 \, D(z) \, f_1^g(x,q_T^2)} \hspace{1.5cm} A^{\cos 2(\phi_T - \phi_\perp)}
ightarrow U = rac{2*|\mathbb{B}_2|}{\mathbb{A}_0}$$

Parametrization of TMDs

Gaussian Parametrization of TMDs

$$f_1^g(x,\mathbf{q}_T^2)=f_1^g(x,\mu)rac{e^{-\mathbf{q}_T^2/\langle q_T^2
angle}}{\pi\langle q_T^2
angle}$$

$$h_1^{\perp g}(x,{f q}_T^2) = rac{M_p^2 f_1^g(x,\mu)}{\pi \langle q_T^2
angle^2} rac{2(1-r)}{r} e^{1-rac{{f q}_T^2}{r \langle q_T^2
angle}}$$

QCD Scale :
$$\mu = \sqrt{m_D^2 + Q^2}$$

Mass of D-meson: $m_D=1.8~{
m GeV}$

 $f_1^g(x,\mu)$ is the collinear gluon PDF

$$r(0 < r < 1) ext{ and } \langle {
m q}_T^2
angle ext{ are parameters}$$

$$r=1/3 \qquad \langle {
m q}_T^2
angle = 1~{
m GeV}^2$$

D. Boer, C. Pisano, PRD 86, 094007 (2012)

MSTW2008 PDF

The European Physical Journal C 63, 189 (2009)

Sivers asymmetry

The cross-section for the transversely polarized proton is written as

$$\int d\phi_{\perp} d\sigma^{T} = 2\pi |\boldsymbol{S}_{T}| \frac{|\boldsymbol{q}_{T}|}{M_{p}} \int dz \left[\mathcal{A}_{0} \sin(\phi_{S} - \phi_{T}) f_{1T}^{\perp g}(x, \boldsymbol{q}_{T}^{2}) - \frac{1}{2} \mathcal{B}_{0} \sin(\phi_{S} - 3\phi_{T}) \frac{|\boldsymbol{q}_{T}|^{2}}{M_{p}^{2}} h_{1T}^{\perp g}(x, \boldsymbol{q}_{T}^{2}) + \mathcal{B}_{0} \sin(\phi_{S} + \phi_{T}) h_{1}^{g}(x, \boldsymbol{q}_{T}^{2}) \right] D(z),$$

• Sivers asymmetry can be extracted through the azimuthal asymmetry

$$A^{\sin(\phi_S-\phi_T)} = rac{|\mathbf{q}_T|}{M_p} \, rac{\int dz \, \mathcal{A}_0 \, D(z) \, f_{1T}^{\perp\,g}(x,\mathbf{q}_T^2)}{\int dz \, \mathcal{A}_0 \, D(z) \, f_1^g(x,\mathbf{q}_T^2)}$$

Gaussian Parametrization of Sivers function

$$egin{aligned} f_{1T}^{\perp g}\left(x,q_{T}
ight) &= rac{\sqrt{2e}}{\pi}\mathcal{N}_{g}\left(x
ight)f_{g/p}\left(x
ight)\sqrt{rac{1-
ho}{
ho}}rac{e^{-q_{T}^{2}/
ho\left\langle q_{T}^{2}
ight
angle}}{\left\langle q_{T}^{2}
ight
angle^{3/2}} \ & \ \mathcal{N}_{g}\left(x
ight) &= N_{g}x^{lpha}(1-x)^{eta}rac{\left(lpha+eta
ight)^{\left(lpha+eta
ight)}}{lpha^{lpha}eta^{eta}} \end{aligned}$$

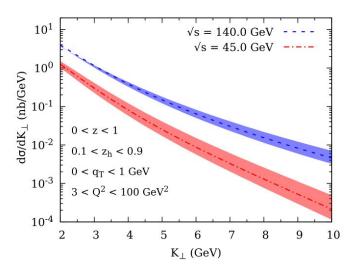
the extracted best fit parameters are

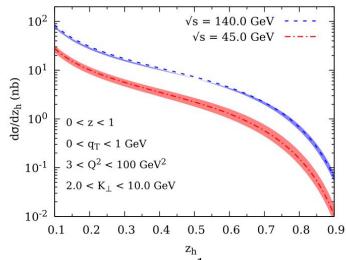
$$N_g = 0.25 \,, \quad lpha = 0.6 \,, \quad eta = 0.6 \,, \quad
ho = 0.1$$

(PHENIX Collaboration at RHIC)

Numerical Results

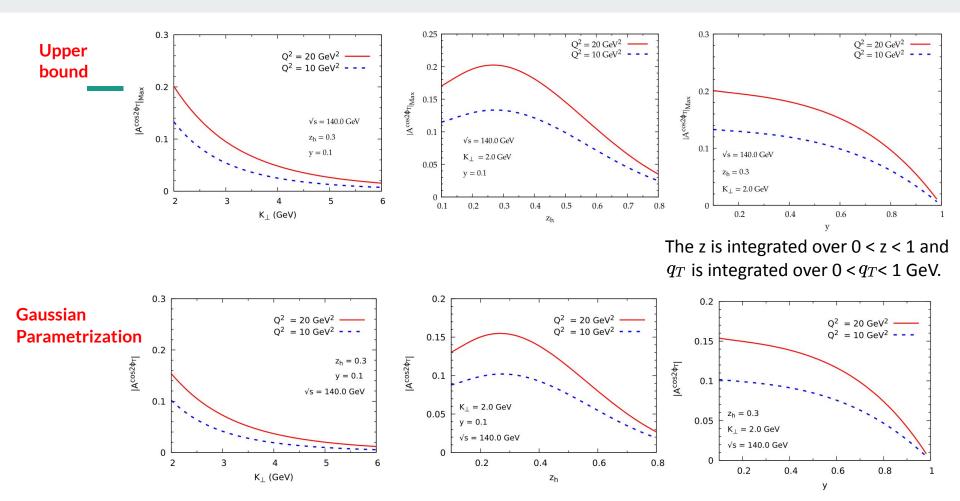
Unpolarized differential scattering cross-section



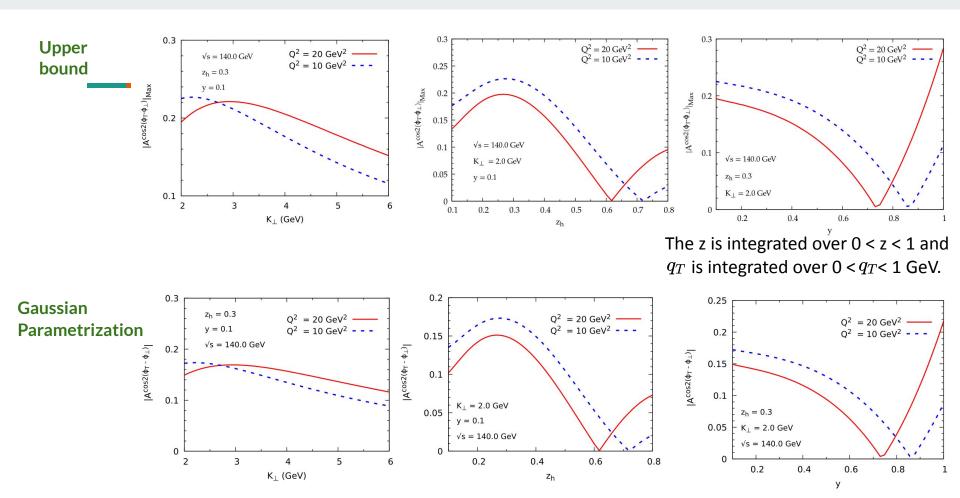


The bands are obtained by varying the factorization scale in the range $rac{1}{2}\mu<\mu<2\mu$

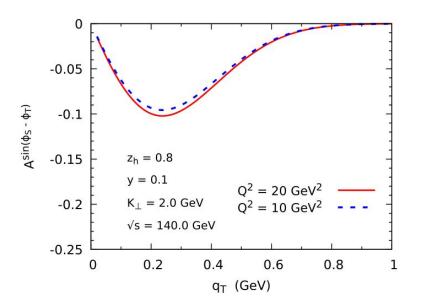
Numerical Results - $\cos 2\phi_T$ Azimuthal Asymmetry

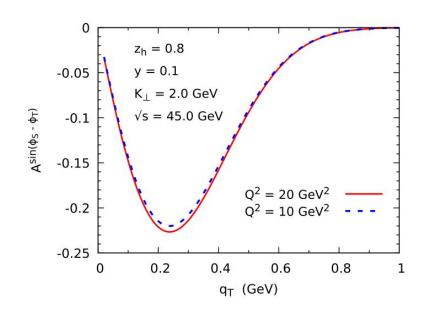


Numerical Results - $\cos 2(\phi_T - \phi_\perp)$ Azimuthal Asymmetry



Numerical Results - Sivers Asymmetry





Sivers Asymmetry

The z is integrated over 0 < z < 1.

Summary

- We estimate the $\cos 2\phi_T$ and Sivers asymmetry in almost back to back D-meson and jet electroproduction at the future EIC.
- We have used fragmentation function to describe the production of D-meson.
- We estimate the asymmetry using Gaussian parametrization of TMDs.
- ullet We observed that $\cos 2\phi_T$ asymmetry and Sivers asymmetry is maximum for large value of
- Back to back production of D-meson and jet can be a promising channel to access the ratio \mathfrak{A}^2 linearly polarized gluon TMD and the gluon Sivers TMD to unpolarized gluon TMD at EIC.

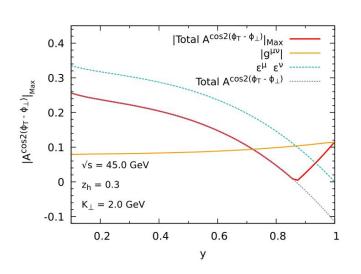
Thank you for attention

Back up slides

The reason for discontinuities

$$L^{\mu
u} = e^2 Q^2 \left(-g^{\mu
u} + rac{2}{Q^2} (2 l^\mu l^
u - l^\mu q^
u - l^
u q^\mu)
ight)$$

Virtual photon polarizations



Unpolarized

Longitudinally polarized

$$L^{\mu\nu} = e^2 \frac{Q^2}{y^2} \bigg[- (1 + (1-y)^2) g_T^{\mu\nu} + 4(1-y) \epsilon_L^{\mu} \epsilon_L^{\nu} \bigg] + 4(1-y) \left(\hat{l}_{\perp}^{\mu} \hat{l}_{\perp}^{\nu} + \frac{1}{2} g_T^{\mu\nu} \right) \\ + 2(2-y) \sqrt{1-y} \left(\epsilon_L^{\mu} \hat{l}_{\perp}^{\nu} + \epsilon_L^{\nu} \hat{l}_{\perp}^{\mu} \right) \bigg] \qquad \qquad \text{Linearly polarized}$$

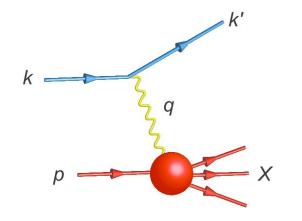
Interference

$$egin{aligned} \mathrm{U} + \mathrm{L} &
ightarrow \mathcal{B}_2 \ \mathrm{Linearly \ polarized} &
ightarrow \mathcal{B}_\mathrm{o}, \mathcal{B}_4 \ \mathrm{I} &
ightarrow \mathcal{B}_\mathrm{i}, \mathcal{B}_3 \end{aligned}$$

Positivity bound

Gluon Helicity
$$|+\rangle$$
 $|+\rangle$ $|-\rangle$ $|$

Deep inelastic e-p scattering



DIS-proton breaks up, and we end up with many final particle states.

$$Q^2=-q^2$$
 Vi

Virtuality of photon

$$q=rac{\hbar}{\lambda}$$

$$x=rac{Q^2}{2P\cdot q}$$

Bjorken variable

$$y=rac{P\cdot q}{P\cdot k}$$

inelasticity

$$rac{d\sigma^{lp o eX}}{dx\,dQ^2} = \sum q(x,Q^2)rac{d\hat{\sigma}^{lq o lq}}{dQ^2}$$

Parton distribution functions

Partonic cross-section