## Chiral & trace anomalies in Deep Virtual Compton Scattering

## **Shohini Bhattacharya**

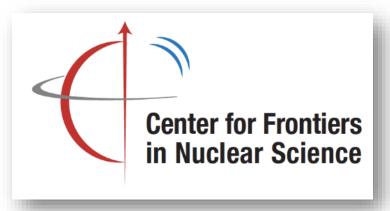
RIKEN BNL/BNL

10 March 2023

In Collaboration with:

Yoshitaka Hatta (BNL) Werner Vogelsang (Tubingen U.)

Based on: <u>arXiv:2210.13419</u>





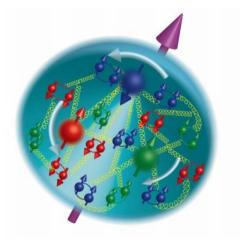
**CFNS Monthly Postdoc Meetings** 

## **Quantum Chromodynamics (QCD)**



- Interested in nucleons (protons & neutrons)
- Deep-inelastic electron-proton scattering (Friedman, Kendall, Taylor et al, 1968)
  - --- Protons are complicated dynamical systems of quarks and gluons (partons)

Pressing question: How to understand nucleons from its constituents?



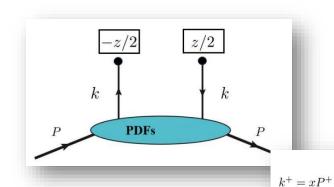
(EIC White Paper)

# Quantum Chromodynamics (QCD): Non-perturbative functions





**Snapshots of the nucleons** 



#### **Parton Distribution Functions**

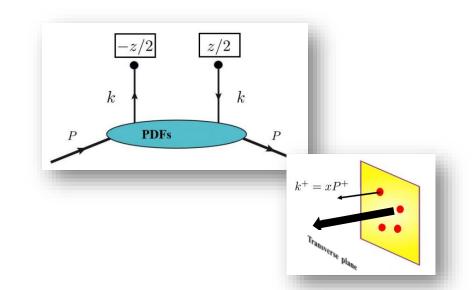


# Quantum Chromodynamics (QCD): Non-perturbative functions





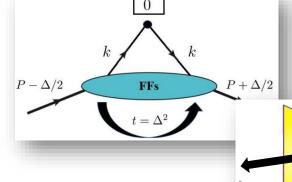
**Snapshots of the nucleons** 





**FFs**  $(\Delta)$ 

**PDFs** (x)



# ns

 $k^+ = xP^+$ 

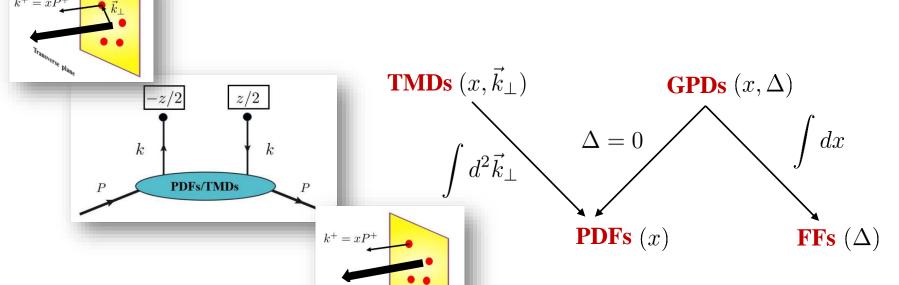
## **Quantum Chromodynamics (QCD): Non-perturbative functions**

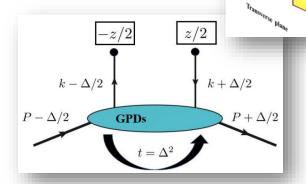


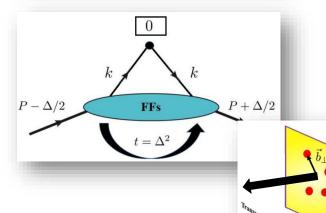
**Snapshots of the nucleons** 

#### **Generalized Parton Distributions**

## **Transverse Momentum-dependent Distributions**







# ns

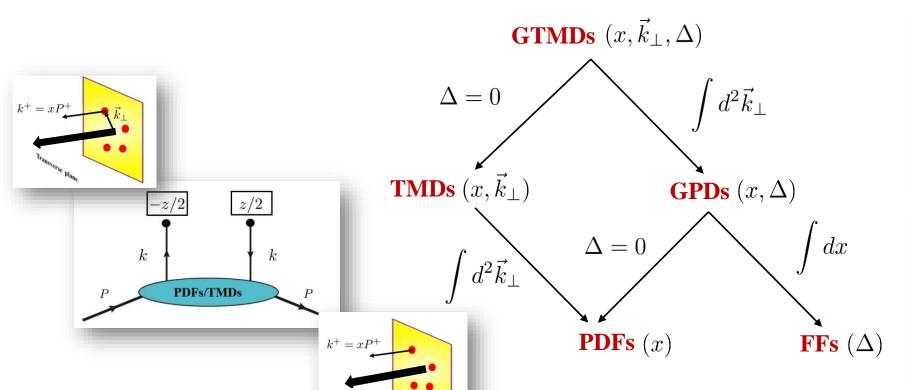
 $k^+ = xP^+$ 

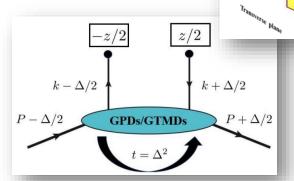
## **Quantum Chromodynamics (QCD): Non-perturbative functions**

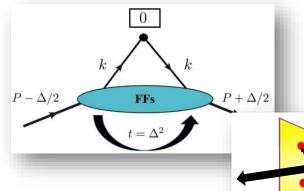


**Snapshots of the nucleons** 

## **Generalized Transverse Momentum-dependent Distributions**

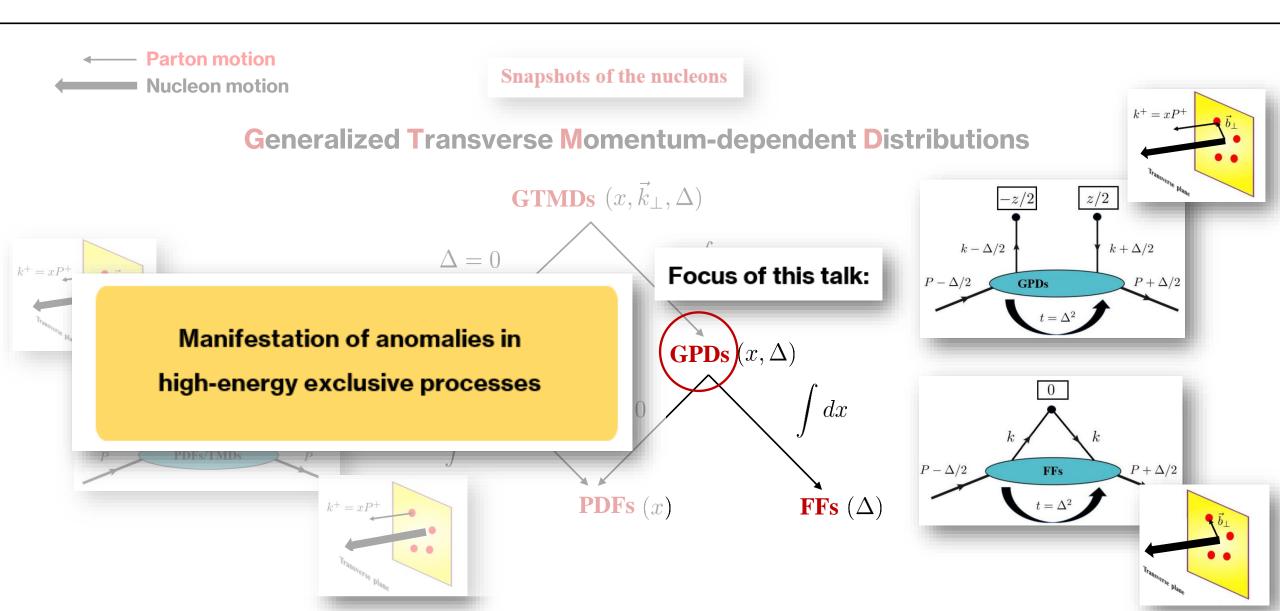






# **W**

## **Quantum Chromodynamics (QCD): Non-perturbative functions**



## **Chiral anomaly**



#### Recap on U(1) chiral anomaly in QCD:

- Lagrangian invariant under global chiral rotation  $\;\psi 
  ightarrow e^{i \alpha \gamma_5} \psi$
- Conserved charge  $J_5^\mu = \sum_f ar{\psi}_f \gamma^\mu \gamma_5 \psi_f$

## **Chiral anomaly**



#### **Anomaly equation:**

$$\partial_{\mu}J_{5}^{\mu} = -\frac{n_{f}\alpha_{s}}{4\pi}F^{\mu\nu}\tilde{F}_{\mu\nu}$$

A fundamental property of axial-vector current is the anomaly equation

## **Chiral anomaly**

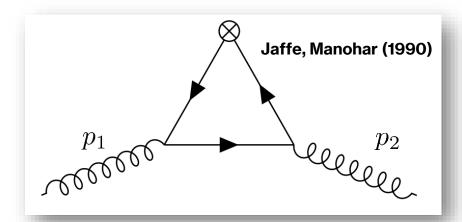


#### **Anomaly equation:**

$$\partial_{\mu}J_{5}^{\mu} = -\frac{n_{f}\alpha_{s}}{4\pi}F^{\mu\nu}\tilde{F}_{\mu\nu}$$

A fundamental property of axial-vector current is the anomaly equation

#### A perturbative solution to anomaly equation:



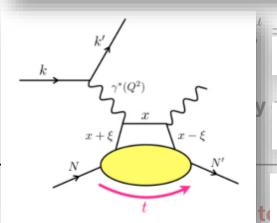
## Calculation in off-forward kinematics $(l = p_2 - p_1)$ :

$$\langle p_2 | J_5^{\mu} | p_1 \rangle = \frac{n_f \alpha_s}{4\pi} \frac{i l^{\mu}}{l^2} \langle p_2 | F_a^{\alpha\beta} \tilde{F}_{\alpha\beta}^a | p_1 \rangle$$

Triangle diagram is dominated by infra-red pole



#### Compton scattering:



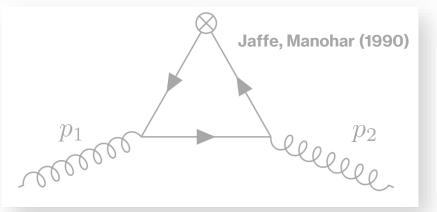
$$-\frac{n_f \alpha_s}{F^{\mu\nu}} \tilde{F}_{\mu\nu}$$

In QCD Compton scattering, box diagrams appear in perturbation theory at one-loop

faulational and the second transfer

Box diagram can be viewed as a non-local generalization of triangle diagram

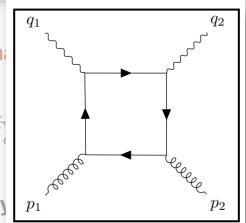
If triangle is dominated by anomaly pole, trace of that should be visible in box diagram



#### Calculation in off-forward kinema

$$\langle p_2|J_5^{\mu}|p_1\rangle = \frac{n_f\alpha_s}{4\pi} \frac{il^{\mu}}{l^2} \langle p_2|F_a^{\alpha\beta}\tilde{F}_a$$

Triangle diagram is dominated by



**Box diagram** 



Aı

The role of the chiral anomaly in polarized deeply inelastic scattering I: Finding the triangle graph inside the box diagram in Bjorken and Regge asymptotics

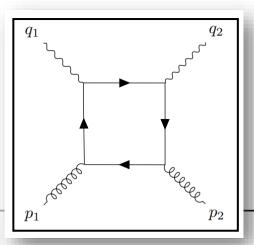
Andrey  $Tarasov^{1,2}$  and  $Raju Venugopalan^3$ 

$$O_{\mu}J_{5}^{i}=-\frac{1}{4\pi}F^{i}F_{\mu\nu}$$

A fundamental pr

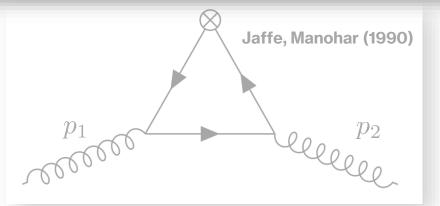
The role of the chiral anomaly in polarized deeply inelastic scattering II: Topological screening and transitions from emergent axion-like dynamics

Andrey Tarasov<sup>1,2</sup> and Raju Venugopalan<sup>3</sup>



**Box diagram** 

Andrey and Raju demonstrated within world-line formalism that to capture the physics of anomaly we need to calculate everything in off-forward kinematics

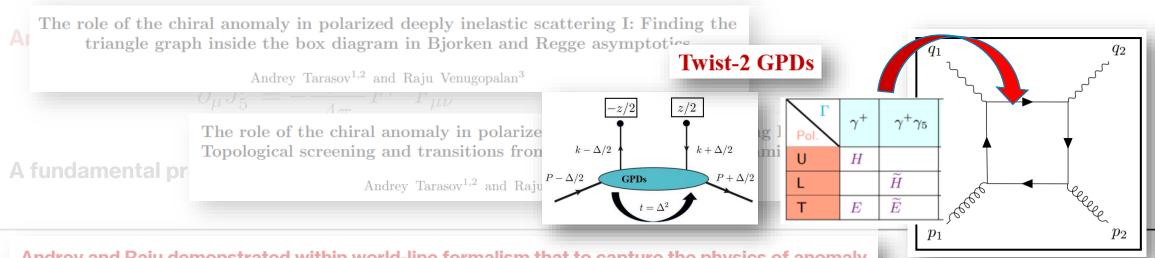


Calculation in off-forward kinematics  $(l = p_2 - p_1)$ :

$$\langle p_2|J_5^{\mu}|p_1\rangle = \frac{n_f \alpha_s}{4\pi} \frac{il^{\mu}}{l^2} \langle p_2|F_a^{\alpha\beta} \tilde{F}_{\alpha\beta}^a|p_1\rangle$$

Triangle diagram is dominated by infra-red pole





Andrey and Raju demonstrated within world-line formalism that to capture the physics of anomaly we need to calculate everything in off-forward kinematics

**Box diagram** 



Jaffe, Manohar (1990)

Calculation in off-forward kinematics  $(l = p_2 - p_1)$ :

arXiv: 2210.13419 (2022)

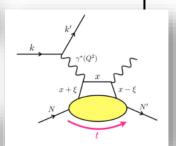
Chiral and trace anomalies in Deeply Virtual Compton Scattering

Shohini Bhattacharya, 1, \* Yoshitaka Hatta, 1, 2, † and Werner Vogelsang 3, ‡

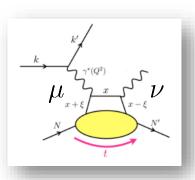
#### Perturbative Feynman-diagram approach:

Interpretation of results in terms of GPDs

Implication of anomaly poles on factorization of Compton scattering processes



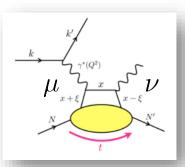




## Antisymmetric part of Compton amplitude $\ (\xi=0)$

$$-\epsilon^{\alpha\beta\mu\nu}P_{\beta}\mathrm{Im}T_{\mu\nu}^{\mathrm{asym}}$$





#### Antisymmetric part of Compton amplitude $(\xi = 0)$

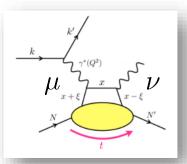
$$-\epsilon^{\alpha\beta\mu\nu}P_{\beta}\text{Im}T_{\mu\nu}^{\text{asym}} \approx \frac{1}{2}\frac{\alpha_s}{2\pi} \left(\sum_f e_f^2\right) \bar{u}(P_2) \left(\left(\Delta P_{qg} \ln \frac{Q^2}{-l^2} + \delta C_g^{\text{off}}\right)\right) \otimes \Delta G(x_B) \gamma^{\alpha} \gamma_5 + \frac{l^{\alpha}}{l^2} \delta C_g^{\text{anom}} \otimes \tilde{\mathcal{F}}(x_B) \gamma_5\right] u(P_1)$$

#### **Expected terms:**

Splitting function  $\Delta P_{qg}(\hat{x}) = 2T_R(2\hat{x}-1)$ 

Coefficient function  $\delta C_g^{\text{off}}(\hat{x}) = 2T_R(2\hat{x}-1) \left( \ln \frac{1}{\hat{x}(1-\hat{x})} - 1 \right)$ 





#### Antisymmetric part of Compton amplitude $(\xi = 0)$

$$-\epsilon^{\alpha\beta\mu\nu}P_{\beta}\text{Im}T_{\mu\nu}^{\text{asym}} \approx \frac{1}{2}\frac{\alpha_{s}}{2\pi}\left(\sum_{f}e_{f}^{2}\right)\bar{u}(P_{2})\left[\left(\Delta P_{qg}\ln\frac{Q^{2}}{-l^{2}}+\delta C_{g}^{\text{off}}\right)\otimes\Delta G(x_{B})\gamma^{\alpha}\gamma_{5}\left(\frac{l^{\alpha}}{l^{2}}\delta C_{g}^{\text{anom}}\otimes\tilde{\mathcal{F}}(x_{B})\gamma_{5}\right)u(P_{1})\right]$$

#### Pole term In agreement with Tarasov, Venugopalan

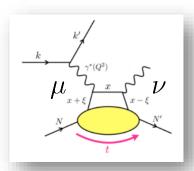
**Coefficient function**  $\delta C_g^{\text{anom}}(\hat{x}) = 4T_R(1-\hat{x})$ 

#### **Twist-4 GPD:**

$$\tilde{\mathcal{F}}(x,l^2) \equiv \frac{iP^+}{\bar{u}(P_2)\gamma_5 u(P_1)} \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \langle P_2 | F_a^{\mu\nu}(-z^-/2) \tilde{F}_{\mu\nu}^a(z^-/2) | P_1 \rangle$$

Chiral anomaly manifests itself in high energy amplitude





#### **Antisymmetric part of Compton amplitude**

$$\mu_{x+\xi} = \frac{1}{x} \frac{\alpha_s}{x-\xi} V - \epsilon^{\alpha\beta\mu\nu} P_{\beta} \operatorname{Im} T_{\mu\nu}^{\operatorname{asym}} \approx \frac{1}{2} \frac{\alpha_s}{2\pi} \left( \sum_f e_f^2 \right) \bar{u}(P_2) \left[ \left( \Delta P_{qg} \ln \frac{Q^2}{-l^2} + \delta C_g^{\text{off}} \right) \otimes \Delta G(x_B) \gamma^{\alpha} \gamma_5 \left( \frac{l^{\alpha}}{l^2} \delta C_g^{\text{anom}} \otimes \tilde{\mathcal{F}}(x_B) \gamma_5 \right) u(P_1) \right]$$

$$\mathbf{Twist-4 \ GPD}$$

#### The QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)

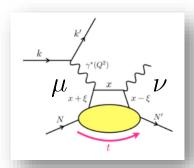
$$-\epsilon^{\alpha\beta\mu\nu}P_{\beta}\text{Im}T_{\mu\nu}^{\text{asym}} = \frac{1}{2}\sum_{f}e_{f}^{2}\bar{u}(P_{2})\left[\gamma^{\alpha}\gamma_{5}(\tilde{H}_{f}(x_{B},\xi,l^{2})+\tilde{H}_{f}(-x_{B},\xi,l^{2}))+\frac{l^{\alpha}\gamma_{5}}{2M}(\tilde{E}_{f}^{\text{bare}}(x_{B},\xi,l^{2})+\tilde{E}_{f}^{\text{bare}}(-x_{B},\xi,l^{2}))\right]u(P_{1})$$

$$+\mathcal{O}(\alpha_{s})+\mathcal{O}(1/Q^{2})$$

Twist-2 GPDs to all orders

Chiral anomaly manifests itself in high energy amplitude & possibly breaks QCD factorization





#### **Antisymmetric part of Compton amplitude**

$$-\epsilon^{\alpha\beta\mu\nu}P_{\beta}\text{Im}T_{\mu\nu}^{\text{asym}} \approx \frac{1}{2}\frac{\alpha_{s}}{2\pi}\left(\sum_{f}e_{f}^{2}\right)\bar{u}(P_{2})\left[\left(\Delta P_{qg}\ln\frac{Q^{2}}{-l^{2}}+\delta C_{g}^{\text{off}}\right)\otimes\Delta G(x_{B})\gamma^{\alpha}\gamma_{5}\right]\left(\sum_{g}e_{f}^{2}\right)u(P_{1})$$

## Anomalous contribution to GPD $ilde{E}$ at one loop

#### The QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)

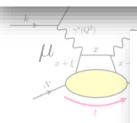
$$-\epsilon^{\alpha\beta\mu\nu}P_{\beta}\text{Im}T_{\mu\nu}^{\text{asym}} = \frac{1}{2}\sum_{f}e_{f}^{2}\bar{u}(P_{2})\left[\gamma^{\alpha}\gamma_{5}(\tilde{H}_{f}(x_{B},\xi,l^{2}) + \tilde{H}_{f}(-x_{B},\xi,l^{2})) + \underbrace{\frac{l^{\alpha}\gamma_{5}}{2M}}_{}(\tilde{E}_{f}^{\text{bare}}(x_{B},\xi,l^{2}) + \tilde{E}_{f}^{\text{bare}}(-x_{B},\xi,l^{2}))\right]u(P_{1})$$

Twist-2 GPDs to all orders

Chiral anomaly manifests itself in high energy amplitude & possibly breaks QCD factorization



## Can we still justify factorization? part of Compton amplitude



#### Redefine

$$\tilde{E}_f(x_B, l^2) + \tilde{E}_f(-x_B, l^2) = \tilde{E}_f^{\text{bare}}(x_B, l^2) + \tilde{E}_f^{\text{bare}}(-x_B, l^2) + \frac{\alpha_s}{2\pi} \frac{2M}{l^2} \delta C_g^{\text{anom}} \otimes \tilde{\mathcal{F}}(x_B, l^2)$$
Tree level
One loop

 $\gamma_g^{\mathrm{anom}} \otimes \tilde{\mathcal{F}}(x_B) \gamma_5 \left| u(P_1) \right|$ 

The QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)



Postulate that the perturbative pole cancels the pre-existing pole in "bare" GPD:

$$\tilde{E}_f^{\text{bare}}(x_B, l^2) + \tilde{E}_f^{\text{bare}}(-x_B, l^2) \approx -\frac{\alpha_s}{2\pi} \frac{2M}{l^2} \delta C_g^{\text{anom}} \otimes \tilde{\mathcal{F}}(x_B, l^2 = 0)$$



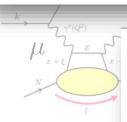
Postulate that the "renormalized" GPD integrates to  $g_P(l^2)$ :

$$g_P(l^2) = \sum_f \int_{-1}^1 dx \tilde{E}_f(x,\xi,l^2) = \sum_f \int_0^1 dx (\tilde{E}_f(x,\xi,l^2) + \tilde{E}_f(-x,\xi,l^2))$$

v amplitude &



## Can we still justify factorization? part of Compton amplitude



#### Redefine

$$\tilde{E}_f(x_B,l^2) + \tilde{E}_f(-x_B,l^2) = \tilde{E}_f^{\mathrm{bare}}(x_B,l^2) + \tilde{E}_f^{\mathrm{bare}}(-x_B,l^2) + \frac{\alpha_s}{2\pi} \frac{2M}{l^2} \delta C_g^{\mathrm{anom}} \otimes \tilde{\mathcal{F}}(x_B,l^2)$$

$$\uparrow \qquad \qquad \uparrow$$
Tree level One loop

 $\gamma_g^{\text{anom}} \otimes \tilde{\mathcal{F}}(x_B) \gamma_5 \ u(P_1)$ 

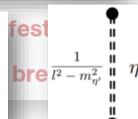
The QCD factorization theorem: Collins, Freund; Ji, Osborne (1998)

#### Consistency:

$$T_{\mu\nu}^{\text{asym}} = \frac{1}{2} \sum_{l} e_f^2 \bar{u}(P_2) \left[ \gamma^{\alpha} \gamma_5 (\tilde{H}_f(x_B, \xi, l^2) + \tilde{H}_f(-x_B, \xi, l^2)) + \frac{l^{\alpha} \gamma_5}{2M} (\tilde{E}_f^{\text{bare}}(x_B, \xi, l^2) + \tilde{E}_f^{\text{bare}}(-x_B, \xi, l^2)) \right] u(P_1)$$

#### Conversion of massless pole to massive pole:

$$\frac{g_P(l^2)}{2M} \approx \frac{-2M\Delta\Sigma}{l^2 - m_{\eta'}^2}$$



high energy amplitude &





$$\mu_{x+\xi}$$

$$-\epsilon^{\alpha\beta\mu\nu}P_{\beta}\text{Im}T_{\mu\nu}^{\text{asym}} \approx \sum_{q=1}^{\infty} \left(\sum_{f} e_{f}^{2}\right) \bar{u}(P_{2}) \left[\left(\Delta P_{qg} \ln \frac{Q^{2}}{-l^{2}} + \delta C_{g}^{\text{off}}\right) \otimes \Delta G(x_{B})\gamma^{\alpha}\gamma_{5} + \left(\frac{l^{\alpha}}{l^{2}}\right) C_{g}^{\text{anom}} \otimes \tilde{\mathcal{F}}(x_{B})\gamma_{5}\right] u(P_{1})$$

Pole was unnoticed in the GPD literature because one typically assumes

$$l^{\mu} = -2\xi p^{\mu} \ \to \ t = l^2 = 0$$

The QCD facto

$$-\epsilon^{\alpha\beta\mu\nu}P_{\beta}$$

before loop integration

Usual rationale: Corrections supposedly higher twist

$$\frac{t}{Q^2}$$

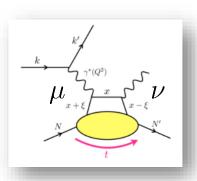
 $|u(P_1)|$ 

t one loop

Twist-2 GPDs to all orders

Chiral anomaly manifests itself in high energy amplitude & possibly breaks QCD factorization



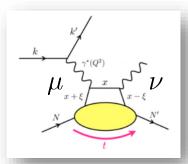


Symmetric part of Compton amplitude  $(\xi \neq 0)$ 

#### **Example:**

$$\bar{F}_1^{\mathrm{off}}(x_B,l)$$





## Symmetric part of Compton amplitude $(\xi \neq 0)$

#### Pole! (New result)

#### **Example:**

$$\bar{F}_1^{\text{off}}(x_B, l) \approx \frac{1}{2} \frac{\alpha_s}{2\pi} \left( \sum_f e_f^2 \right) \left[ \left( P_{qg} \ln \frac{Q^2}{-l^2} + C_{1g}^{\text{off}} \right) \otimes g(x_B) \left( + \frac{1}{l^2} C^{\text{anom}} \otimes' \mathcal{F}(x_B, \xi, l^2) \right) \frac{\bar{u}(P_2) u(P_1)}{2M} \right]$$

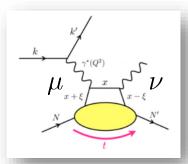
#### Twist-4 GPD:

$$\mathcal{F}(x,\xi,l^2) = -4xP^+M \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \underbrace{(P_2|F^{\mu\nu}(-z^-/2)F_{\mu\nu}(z^-/2)|P_1\rangle}_{\bar{u}(P_2)u(P_1)}$$

| Chiral anomaly                                                                                    | Trace anomaly                                                                                                               |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Anomaly equation: $\partial_\mu J_5^\mu = -\frac{n_f\alpha_s}{4\pi} F^{\mu\nu} \tilde F_{\mu\nu}$ | Anomaly equation: $\Theta^\mu_\mu = \frac{\beta(g)}{2g} F^{\alpha\beta} F_{\alpha\beta} \qquad \Theta^{\mu\nu} : {\sf EMT}$ |
| Form Factors: $(g_A,g_P)$                                                                         | Gravitational Form Factors: $(A,B,\bar{C},D)$                                                                               |

Trace anomaly manifests itself in high energy amplitude & possibly breaks QCD factorization





Symmetric part of Compton amplitude  $(\xi \neq 0)$ 

Pole! (New result)

#### **Example:**

$$\bar{F}_1^{\text{off}}(x_B, l) \approx \frac{1}{2} \frac{\alpha_s}{2\pi} \left( \sum_f e_f^2 \right) \left[ \left( P_{qg} \ln \frac{Q^2}{-l^2} + C_{1g}^{\text{off}} \right) \otimes g(x_B) + \frac{1}{l^2} C^{\text{anom}} \otimes' \mathcal{F}(x_B, \xi, l^2) \right] \frac{\bar{u}(P_2) u(P_1)}{2M} \right]$$

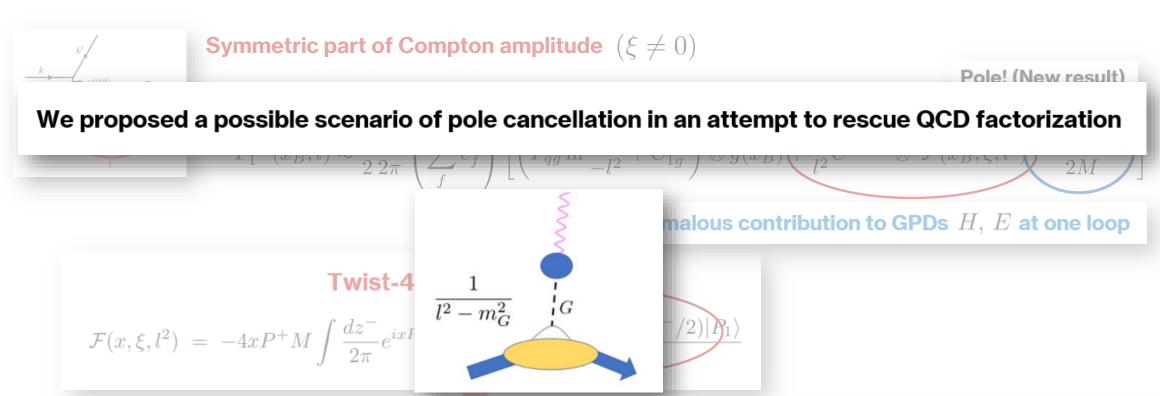
Anomalous contribution to GPDs H, E at one loop

#### Twist-4 GPD:

$$\mathcal{F}(x,\xi,l^2) = -4xP^+M \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \underbrace{\langle P_2|F^{\mu\nu}(-z^-/2)F_{\mu\nu}(z^-/2)|P_1\rangle}_{\bar{u}(P_2)u(P_1)}$$

Trace anomaly manifests itself in high energy amplitude & possibly breaks QCD factorization





glueball mass generations

ssibly breaks QCD factorization

## **Summary**



 QCD factorization for Compton scattering: Backbone of the GPD programs at ongoing & future experiments including EIC

Unexpected contributions originating from chiral & trace anomalies

$$T^{\mu\nu} \sim \frac{\langle F^{\alpha\beta}\tilde{F}_{\alpha\beta}\rangle}{l^2}, \quad \frac{\langle F^{\alpha\beta}F_{\alpha\beta}\rangle}{l^2}$$

Unnoticed in literature, possible violation of factorization

## **Summary**



Perturbative calculations suggest that massless poles are induced in GPDs  $\, \tilde{E}, \, H, \, E \,$ 

ams at

However, we know there are no massless poles in axial and gravitational form factors (moments of GPDs)

Unexpected contributions originating from chiral & trace anomalies

$$T^{\mu\nu} \sim \frac{\langle F^{\alpha\beta}\tilde{F}_{\alpha\beta}\rangle}{l^2}, \quad \frac{\langle F^{\alpha\beta}F_{\alpha\beta}\rangle}{l^2}$$

Unnoticed in literature, possible violation of factorization

## **Summary**



Perturbative calculations suggest that massless poles are induced in GPDs  $\, \tilde{E}, \, H, \, E \,$ 

ams at

However, we know there are no massless poles in axial and gravitational form factors (moments of GPDs)

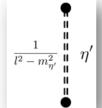
We proposed a possible scenario of pole cancellation trace anomalies

This has to do with eta-meson & glueball mass generations

Antisymmetric case:

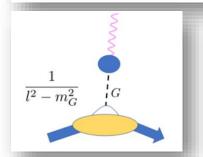
Unnoticed





$$g_P \sim \int dx \tilde{E}(x) \sim \frac{1}{l^2 - m_{n'}^2}$$

Symmetric case:



## **Summary & outlook**



Perturbative calculations suggest that massless poles are induced in GPDs  $\, ilde{E}, \, H, \, E \,$ 

ams at

However, we kno

Novel connections between DVCS & chiral/trace anomalies:

This could be a new & potentially rich avenue for GPD research

rs (moments of GPDs)

We prop

**Higher-loop calculations** 

pole cancellation

race anomalies

This has to do with eta-meson & glueball mass generations

Imprint of anomaly on other physical processes:

**Antisymme** 

Symmetric case:

(Example: Deeply-virtual meson production)

