SciGlass: Performance Studies

Renee Fatemi, Dmitry Kalinkin

University of Kentucky

Review Charge: Simulation and Performance

- c. Simulation studies: already performed, ongoing and planned (with timelines); results from the simulations; particular care in (i) showing how realistic the parameters used in simulations are and (ii) reporting what is missing for a fully realistic simulation (backward, specific event categories, ...)
- d. Does the simulation take into account the realistic light collection uniformity, response of the selected photosensors and related FEE?
- 3. Performances:

Please use the official simulation framework. Please tag all software (sim., reco., and analysis) used in these studies.

- a. Key plots to be shown:
 - Photon and electron energy resolution *σ*/E as a function of E (0-18GeV) at |η|=0, 0.5, 1. Consider a minimum energy of 50 MeV.
 - For each point, please extract FWHM and percentage of gammas/electrons within a cut window of |E/p-1| < 1x FWHM. Please provide the E/p lineshape in the backup material.
 - ii. Photon angular resolution (φ, η) as a function of E (0-18 GeV) at |η|=0, 0.5, 1
 - iii. Pion rejection as a function of p $\,$ (0-18 GeV/c) at 95% e-efficiency at $|\eta|{=}0,\,0.5,\,1$
 - iv. Pion rejection versus e-efficiency at p = 1, 5, 10 GeV/c at $|\eta|=0, 0.5, 1$
 - v. Separation of gamma from π^0 decay: separation probability as a function of p at $|\eta|$ =0, 0.5, 1
 - vi. Measured cluster energy response to E= 8 GeV single electron vs η & ϕ in the full acceptance
- b. Comparison of the present assessment of the detector performance compared with the YR requirements?

Simulation studies

» ECCE simulation with PANDA-like geometry (Fun4All framework)

https://arxiv.org/abs/2207.09437

- » Standalone Geant4 with optical photon propagation for beam tests using specific photosensors (by Petr Stepanov)
- » Simulation for ePIC (DD4hep-based)

Simulation studies

- » ECCE simulation with PANDA-like geometry (Fun4All framework)
- » Standalone Geant4 with optical photon propagation for beam tests using specific photosensors (by Petr Stepanov)

Optical Resolution Series for SciGlass 4-1-1 Crystal Assembly

» Simulation for ePIC (DD4hep-based) Subject of this talk

Simulation setup

- » Single particle simulations
- » Momentum direction sampled uniformly on a sphere
- » Vertex at (0, 0, 0)
- » ePIC 23.03.0 geometry (next slide)
- » FTFP_BERT physics list
- » Particle momenta are used in place of reconstructed charged track momenta
- » Analysis cut: only consider towers with $E_{tower} > 50 \text{ MeV}$

Simulation setup: SciGlass calorimeter geometry

Tower dimensions and placement implemented based on mechanical design

SciGlass lengths of 45.5 and 40 cm (\approx 16.3 and 14.3 X_0)

SciGlass material in Geant

- » Density 4.22 g/cm³
- » Energy deposits corrected according to the Birks' law with kB = 0.0333 mm/MeV (nominal for PbWO4 at CMS)
- » Radiation length $X_0 \approx 2.8$ cm (via Rossi approximation)
- » Molière radius $R_M \approx 4.5$ cm

Energy resolution

Energy resolution: digitization and readout

- » Assuming Hamamatsu S14161-6050HS-04 (4 × 4 array of 6 × 6 mm 14331 channel MPPCs)
- » PDE $\epsilon_O \approx 50\%$ at SciGlass emission wavelength
- » Light yield $\mathcal{L} \approx 3000 \ \gamma/\text{MeV}$ (10× PbWO₄)
- » Geometric light collection factor: $\epsilon_{LC} = N_{\text{packages}} \times (0.36 \text{ cm}^2)/(25 \text{ cm}^2) \approx N_{\text{packages}} \times 16\%$
- » Pixel saturation and light collection fluctuates according to

Pion rejection: η dependence

The E/p cut is used where E is a deposited energy sum in a 3×3 cluster, and p – true momentum.

Pion rejection: ML

Boosted Decision Trees implementation in XGBoost used with default parameters. ML input: 9 tower energies for 3x3 cluster, particle p_{T} , η and φ .

TODO: Also input the position of the 3x3 cluster in the calorimeter (improve ML)

Pion rejection ROC: η dependence

Pion rejection ROC: ML method

Pion rejection: detector design

- » Longitudinal gaps are **not** projective in η
- » Transverse gaps are projective in φ

reference detector

...without wedge box

...without tower gaps

...without carbon fiber

...without longitudinal gaps

...without sector gaps

Pion rejection: detector design

- » Longitudinal gaps are **not** projective in η
- » Transverse gaps are projective in φ

nber

reference detector

...without wedge box

...without tower gaps

Kentucky.

...without longitudinal gaps

...without sector gaps

Systematics

Island Clustering

- 1 Pick connected "islands" of hits
- 2 Select islands with peak energy > threshold (50 MeV here)
- 3 In each island, find hits that are local maxima w.r.t. 4 neighbours
- 4 Select local maxima above a threshold (100 MeV here yeah, should be 50)
- 5 For hit *h* calculate its distance d_{hm} to each local maxima hit *m*, the weight is

$$\omega_{hm} \sim E_m \exp\left(-\frac{d_{hm}}{\lambda}\right)$$

6 Fraction proportional to ω_{hm} of energy E_h is attributed to a subcluster m.

For each island calculate $\chi^2 = \sum_h \left(\sum_m E_m \exp\left(-\frac{d_{hm}}{\lambda}\right) - E_h \right)^2$, minimize χ^2 over λ

π^0/γ separation

- » Naive method based on counting local maxima
- » ML classifier based on 5x5 cluster information (without tracking) potential for recognizing elongation

Reconstructed cluster energy response

...to E = 8 GeV single electron vs η and φ in the full acceptance $E_{\text{clust.}}$ vs η : $E_{\text{clust.}}$ vs ϕ :

 η -dependent calibration is expected.

Wedge box structure has a dominant effect.

Angular resolution

Further work: detector optimization

Tower placement and rotation in the mechanical design is not optimized using physics metics, yet!

Random samples in the design space:

Example toy optimization for 2 objectives (x,yaxes – measures for acceptance and resolution):

Both plots rely on longitudinal variations only. Other parameters to be included.

Conclusion

- » Energy resolution is well exceeding the YR requirement
- » Requirements on pion rejection can be met after a change:
 - Removing/modifying wedge structure
 - Relaxing the requirement on 95% electron efficiency constraint
- » Neutral pion separation was demonstrated using simple algorithms
- » Further input from beam tests would be extremely valuable for constraining hadron interaction properties

Yellow Report Requirements

η	Nomone	ature	Electrons and Photons		
	Nomenc		Resolution	PID	min E
-3.5 to -3.0	- 온영화 여자가 ?	Backward Delector		π suppres sion up to 1:1E- 4	50 MeV
-3.0 to -2.5					50 MeV
-2.5 to -2.0			2%/√E(+1-3%)		50 MeV
-2.0 to -1.5	Central		7%/√E(+1-3%)		50 MeV
-1.5 to -1.0	Detector		7%/√E(+1-3%)		50 MeV
-1.0 to -0.5		<u>Barrel</u>	(10-12)%/√E (+1-3%)		50 MeV
-0.5 to 0.0	2011년 11년 중요.				50 MeV
0.0 to 0.5	말한 광장 귀엽이다.				50 MeV
0.5 to 1.0					50 MeV

