SciGlass Electromagnetic Barrel Calorimeter

Tanja Horn

The Catholic University of America / Jefferson Lab

Charge and focus of this Presentation

EPIC Barrel ECAL review

Request for information from the proponents

GD/I conveners, 12/12/2022

It is asked that the proponents address the following questions:

- 1. Reminder of the proposed detector configuration for the use in the ePIC detector.
- 2. Input information:
 - R&D, prototypes and their tests: done so far, ongoing effort, future planning (with timelines); results from prototypes and their tests
 - Pertinent information on similar technology/design that is used by other experiments or R&D efforts (example reference could be literature, and or conference talks).
 - c. Simulation studies: already performed, ongoing and planned (with timelines); results from the simulations; particular care in (i) showing how realistic the parameters used in simulations are and (ii) reporting what is missing for a fully realistic simulation (backward, specific event categories, ...)
 - d. Does the simulation take into account the realistic light collection uniformity, response of the selected photosensors and related FEE?

1. Detector Configuration: Design Considerations

Scattered electron kinematics measurement is essential at the EIC

- □ Goal: provide continuous coverage in EM calorimetry in particular in the electron-going direction
- High precision, hermetic detection of the scattered electron is required over a broad range in η and over energy range from 0.3 to tens of GeV
 - In the very backward direction high precision is required for electron kinematics measurement
 - In backward and barrel region it is required for clean electron identification. In the barrel region, driven by high-x and high-Q² science drivers

η	[-41.75]	[-1.75 1.3]			
Material	PbWO ₄	SciGlass			
X _o (mm)	8.9	24-28			
R _M (mm)	19.6	35			
Cell (mm)	20	40			
x/x _o	22.5	17.5			
Dz (mm)	60	56			

Here, we selected SciGlass (developed with DOE/STTR) for the barrel as it provides very good e/h separation and energy resolution, matched to the backward region needs

1. Detector Configuration: SciGlass Barrel EMCal

- Concept: Homogeneous EM calorimeter typical materials in lepton induced hadron scattering: crystals and glass, a well-established detector technology
- □ Barrel EMCal readout electronics can be identical with the backward EM calorimeter → no additional technology required
- Moderate number of readout channels
- Advanced design concept built on PANDA precision homogeneous barrel EMCal design
- Experienced team of institutions (AANL, CUA, FIU, JMU, UKY, MIT..) including many early-career researchers working on design, simulation,

prototypes

→ See Renee Fatemi talk
→ See Dmitry Kalinkin talk

 \rightarrow See Rosi Reed talk

 \rightarrow See Josh Crafts talk

1. Homogeneous Design based on PANDA

2.A Glass Scintillator (SciGlass) Fabrication

Scintilex in collaboration with the VSL at CUA has made much progress with the development and fabrication of SciGlass over the last 3 years

- Scintilex has an SBIR phase-II/IIA award to start large-scale production of larger blocks (40+ cm, rectangular and projective shapes) to meet the specific schedule of the EIC
- Sci-Glass of length 20cm can now be produced reliably and 40cm long blocks can now be produced routinely – so far we have received 3 lab size batches (10-20 samples), most recently 25 blocks of 40cm length

SBIR/STTR DE-SC0020619, DE-SC0021459

2.A Glass Scintillator (SciGlass) Timeline

- □ Pre-STTR Feasibility Studies: 2018 2019 (test samples)
- □ STTR Phase 1: 2020 2021 (formulation optimization)
- □ STTR Phase 2: 2021 2023 (scale up to 40cm)
- □ STTR Phase 2A: 2023 2025
- Production: Commercial glass furnaces can produce many tons of glass per day; therefore, production rates of several 1000 glass blocks per day should be achievable, thus greatly expediting the production process and reducing costs.
- Main risks of developing high-quality SciGlass were addressed by DOE/SBIR grants and generic detector R&D program

SBIR/STTR DE-SC0020619, DE-SC0021459

8 8

2.A R&D: eRD105: SciGlass R&D

The main goal of this R&D project is to demonstrate that SciGlass is a viable cost-effective solution as EIC calorimeter technology

The R&D effort benefits from a separately funded DOE SBIR/STTR Phase 2/2A providing facilities and resources for the glass fabrication and scale-up production

- eRD105 made good progress in FY22 towards completion albeit there are delays due to Covid19 and start of R&D funding
- The remaining R&D in FY23 aims at optimizing the readout (SiPM matrix and services) matched to glass and comparison of different glass geometry shapes with prototypes and beam tests.

2.A R&D: eRD105 Milestones for FY23 and beyond

FY23: Scale-up to 40 cm complete

oReceive ~25 test samples

•Beam test with 3x3 (5x5) prototype with 40+ cm. (CUA, AANL, JLab)

- HallD Jlab beam test logistic: installation, safety, DAQ etc. (JLab)
- Beam test preparation and data analysis (CUA, AANL)
 Develop and implement a SiPM-based readout (INFN-GE)
 Design and test an optimized streaming RO chain (INFN-GE)
 Sciglass blocks characterization, including Irradiation (IJCLab-Orsay, Kansas U.)
 Implement process for different geometries (CUA)

□ FY24: Final test of different geometries

oprojective SciGlass as required for barrel EMCal application
 optimization of reflector and impact of a carbon fibre inner support structure
 for the glass blocks on calorimeter performance

aboratoire de Physique

9

2.A eRD105 Project R&D Timeline

March 2023

Not yet taking into account delayed start in Project R&D contracts

Good progress towards completing the R&D – some items complete ahead of schedule

10

10

Example of SciGlass Characterization: Radiation Hardness

EM irradiation: ≻ ~1 MeV Co-60 ≻ 160 keV Xray

Before irradiation

After 2min 160KeV Xray at >3k Gy/min

Photograph taken immediately after irradiation. No visual evidence of radiation damage (don't get fooled by the yellow Kapton tape)

Irradiation of 20cm long blocks (30-100 Gy)

2.A 3x3 Prototype tests (20cm) - Complete

SciGlass development is supported by SBIR/STTR DE-SC0020619

Prototype 3x3 array installed and tested – energy resolution measured for three different beam energies
 Results for ~7 X₀ blocks – matches with Geant4

□ Plans for 2022/2023: Test with ~15X₀ (40cm) long blocks

2.A Prototype tests 40cm with SiPM Readout

Goal: evaluate suitable SiPM device and configurations (matrix and services) for homogeneous calorimeters (also of interest for PWO)

2.A 3x3 Prototype 40cm - Complete

SciGlass development is supported by SBIR/STTR DE-SC0020619

Readout Configuration

- Each glass block read by 1 SiPM (Hamamatsu S13360-3025PE)
- Bias voltage and signal amplification provided by custom designed board
- □ 2 piece holder concept developed to attach SiPM to glass

2.A 3x3 Prototype 40cm - Complete

Installation and first data

mI

SciGlass development is supported by SBIR/STTR DE-SC0020619

 \Box December 2022: First test with ~15X₀ (40cm) long blocks and SiPM readout completed Data acquisition complete Data analysis ongoing **Resolution limited by not yet** optimized detector geometry to Moliere radius

2.A 5x5 Prototype 40cm - Ongoing

Readout Configuration

- Each glass block read by 2 SiPMs (Hamamatsu S14160-6050HS)
- Bias voltage provided by custom designed board
- Signal amplification by custom transimpedance amplifier
- □ Commissioning for beam test at ~4 GeV:
 - Single PE test 5-6 mV amplitude, 600pW area
 - \circ $\,$ Cosmics to check for saturation
 - Amplifier test
 - Energy deposition projections

Two readout configurations are tested in parallel in this beam test campaign:

- 1) Nominal trigger
- 2) Streaming Readout (details not discussed here)

2.A 5x5 Prototype 40cm - Ongoing

Installation and first data

Installation and alignment completed □ Initial commissioning allowed to isolate and address issues (e.g., bad connection at fADC) • Next (March 2023): complete any remaining fixes and start production data (triggered and SRO), make calibrations, extract resolutions, test different SiPM matrix □ Future test planned at CERN summer 2023

2.B Homogeneous EM Calorimeters at JLab

Based on PWO crystals and glass

Neutral Particle Spectrometer (Hall A/C)

Nucl.Instrum.Meth.A 956 (2020) 163375

2.B Homogeneous Scintillating Glass Calorimeters in Experiments

Scintillating Glass of different formulation has been used for beam tests and as EMCal in the 1980s

https://inspirehep.net/literature/261664

Performance of a scintillating glass calorimeter for electromagnetic showers, 1988

https://inspirehep.net/files/1299a6aa1e200e01f9d7f208800a81f6

The Experiment 705 Electromagnetic Shower Calorimeter, 1993

15.x15.x89 cm^3 7.5x7.5x89 cm^3

Rad. Length 20.9 X0

0.99%+4.58%/sqrt(E)

Resolution for mixed calorimeter (lead glass and SCG1-Glass)

Results from 1980s scintillating glass calorimeters encouraging \rightarrow Need to establish performance for SciGlass (different formulation)

Summary

- Concept: Homogeneous EM calorimeter typical materials in lepton induced hadron scattering: crystals and glass, a well-established detector technology
- □ Barrel EMCal readout electronics can be identical with the backward EM calorimeter → no additional technology required
- Moderate number of readout channels
- Advanced design concept built on PANDA precision homogeneous barrel EMCal design
- Experienced team of institutions (AANL, CUA,

FIU, JMU, UKY, MIT..) including many early-career
 researchers working on design, simulation,
 Prototypes → See Renee Fatemi talk
 → See Dmitry Kalinkin talk
 Main risks of developing high-quality SciGlass
 were addressed by DOE/SBIR grants and generic
 detector R&D program

 \rightarrow See Rosi Reed talk

 \rightarrow See Josh Crafts talk

2.B Scintillating Glass considered for future HEP experiments

	BGO	BSO	PWO	PbF ₂	PbFCI	Sapphire:Ti	AFO Glass	DSB:Ce Glass ¹	DSB:Ce,Gd Glass ^{2,3}	HFG Glass ⁴
Density (g/cm ³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	3.8	4.7 - 5.4	5.95
Melting point (°C)	1050	1030	1123	824	608	2040	980 ⁵	1420 ⁶	1420 ⁶	570
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	3.36	2.14	1.74
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.89	3.52	2.56	2.45
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	32.8	24.2	23.2
Z _{eff} value	72.9	75.3	74.5	77.4	75.8	11.2	42.8	44.4	48.7	56.9
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	5.56	7.68	8.24
Emission Peak ^a (nm)	480	470	425 420	Λ	420	300 750	365	440 460	440 460	325
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	١	١	١	1.50
LY (ph/MeV) ^c	7,500	1,500	130	- N	150	7,900	450	3,150	2,500	150
Decay Time ^a (ns)	300	100	30 10	Λ	3	300 3200	40	180 30	120, 400 50	25 8
d(LY)/dT (%/ºC)○	-0.9	?	-2.5	- N	?	?	?	-0.04	-0.04	-0.37
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6?	?	2.0	2.0?	?

Table 3. Optical and scintillation properties of candidate inorganic scintillators for CalVision and the HHCAL concept

Top line: slow component, bottom line: fast component. а. At the wavelength of the emission maximum.

At room temperature (20°C).

b.

С.

E. Auffray, et al., J. Phys. Conf. Ser. 587, 2015 R. W. Novotny, et al., J. Phys. Conf. Ser. 928, 2017

V. Dormeney, et al., the ATTRACT Final Conference

E. Auffray, et al., NIMA 380 (1996), 524-586

Low density crystals/glasses

R. A. McCauley et al., Trans. Br. Ceram. Soc., 67, 1968

I. G. Oehlschlegel, Glastech, Ber. 44, 1971

https://arxiv.org/ftp/arxiv/papers/2203/2203.07154.pdf https://detectors.fnal.gov/projects/calvision/

22