Schedule

RIKEN/RBRC

Itaru Nakagawa

Beginnings

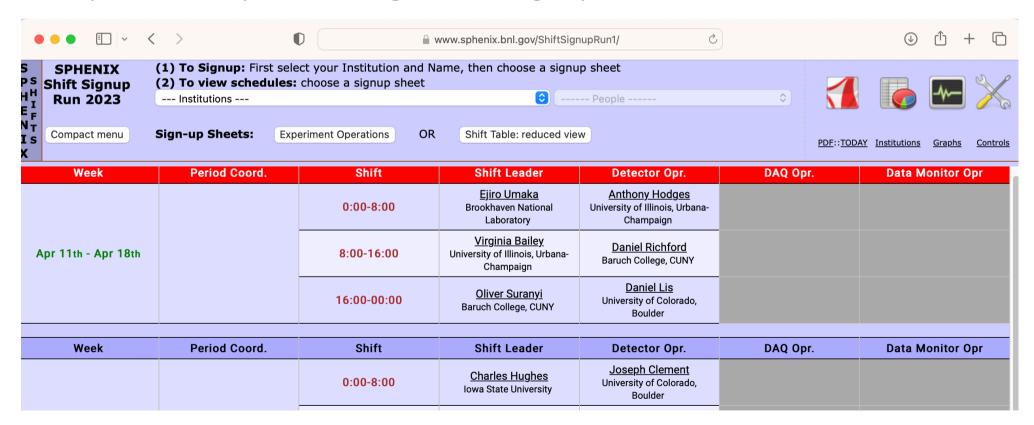
At the beginning of the run, all detector low voltage power, high voltage power, gas, and cooling should be brought to their operating points so that any detector can be tested during the commissioning period. Thanks to the design of the readout electronics which allows partitioning of the detector into sub-detectors which can be configured and operated independently, all the detector groups will be attempting to test their detectors from the outset of the commissioning period. However, as the commissioning progresses, individual detectors will be the main priority during their specific commissioning periods.

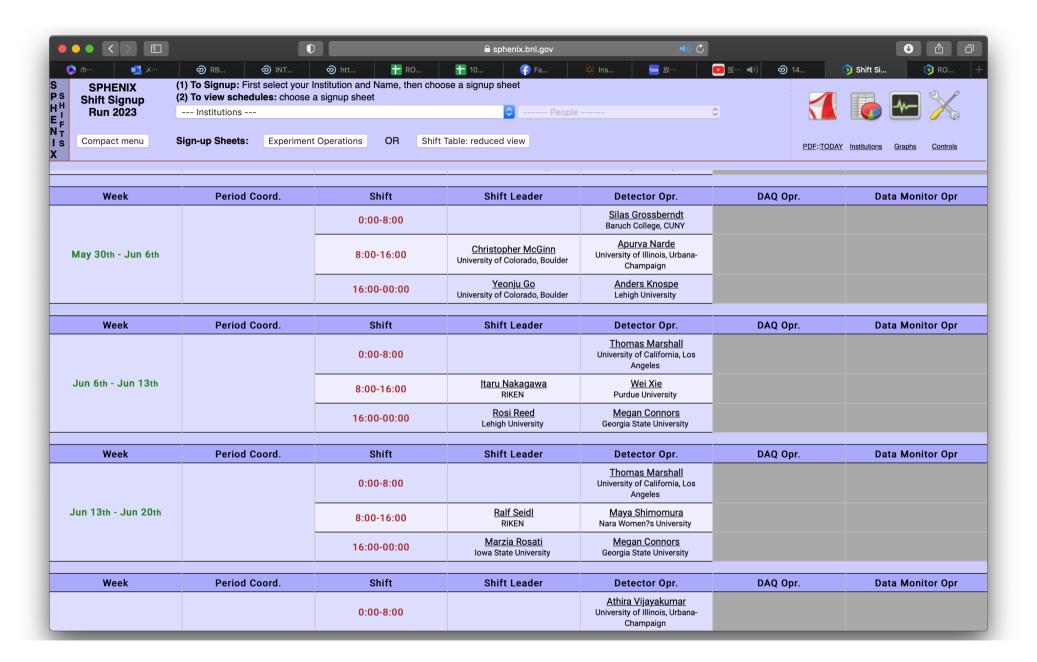
- April 11 Watch shifts begin
- April 14 BHSO approves sPHENIX operation
- April 17 Begin operation (power, water, Global Interlocks in run state)
- April 24 Blue 4K wave
- April 26 Close shield wall (guesstimate)
- April 27 Begin working with beams in RHIC

Conceptual design of commissioning

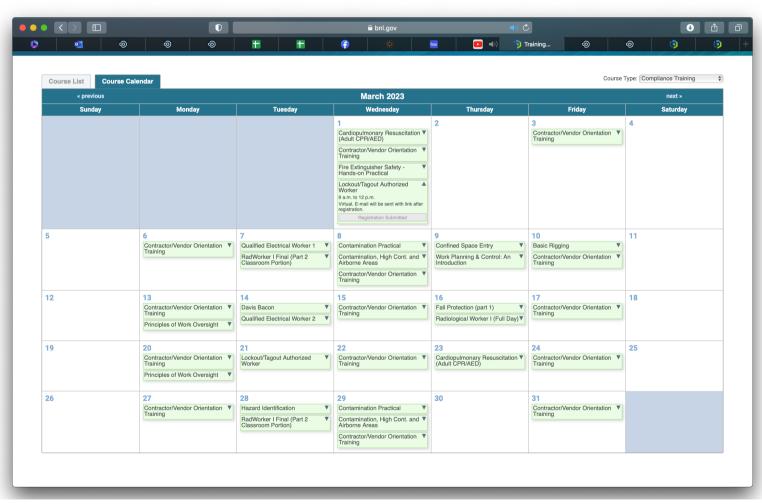
- We start at low luminosity
- In each week of commissioning, we emphasize one detector, but all detectors should be trying to exercise their systems in whatever way is possible (clock triggers, random triggers, cosmic ray triggers, beam triggers)
 - This will require a continuing and daily negotiation for assistance with electronics and software
- First 2 weeks are primarily the MBD and MBD trigger development
- I expect we will need weekly maintenance periods of at least 24 hours

C-AD guidance (from BUP)


"The guidance from C-AD is that there is a 0.5 week "cool down from 50 K to 4 K", then a 2.0 week "set-up mode" for the specific collision species, and then a 0.5 week "ramp-up". If switching species, there is again a 2.0 week "set-up" and 0.5 week "ramp-up". Lastly, at the end of the running period, there is a 0.5 "warm-up from 4 K to 50 K". In addition, we assume that in the first, second and third weeks of declared Physics Running, one achieves 25%, 50%, and then 75% of the luminosity target, with subsequent weeks at 100%. These are standard assumptions following C-AD guidance. "


Beam operation

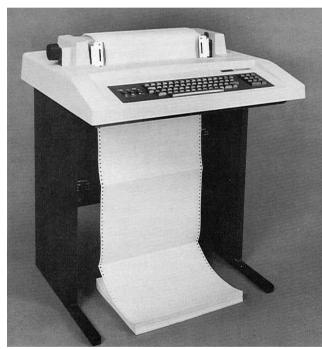
W k	lee RHIC	sPHENIX	Result
	1 No beam	Magnet cool-down and ramp	Magnet at full field
	6 bunches, 0 crossing angle, 200 GeV 2Au+Au, collision rate 2 kHz	· · · · · · · · · · · · · · · · · · ·	z vertex distribution, MBDLL1 operational; other detectors begin to energize
	6 bunches, 0 crossing angle, 200 GeV 4Au+Au, collision rate 2 kHz	Begin operating calorimeters, TPC	Assemble Big partition; event displays
	6 bunches, 2mr crossing angle, 200 GeV 6 Au+Au, collision rate 2 kHz	Take data with nominal low luminosity conditions; zero field run	First slug of data analyzed at RCF
	111 bunches, 0 mr crossing angle, 200 8 GeV Au+Au, 1-5 kHz	Take data with luminosity approaching design	Stress test DAQ, measure radiation environment
	111 bunches, 2 mr crossing angle, 200 10 GeV Au+Au, 5-15 kHz	Attempt full operation	Detector monitoring operational
	Begin Physics data taking (111, 2mr, 200 12 GeV Au+Au, 20 kHz)	Physics data taking	
	24 (27) End of run		


Opening first block of shifts for sign-up: April 25 – June 27

https://www.sphenix.bnl.gov/ShiftSignupRun1/

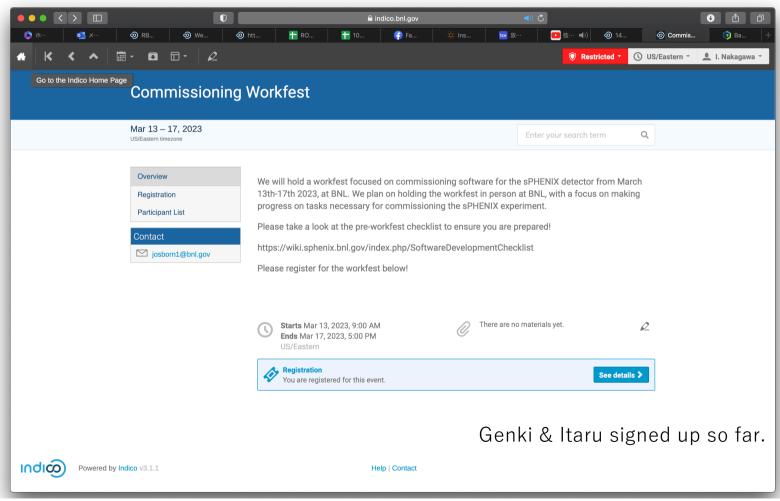
Loc out Tag out Class Room Training

Commissioning Workfest


Dear sPHENIX colleagues,

After the poll and the discussion in the software meeting today, it appears that the week of March 13th is the best option for a workfest. Therefore, we will plan to hold another workfest to prepare for commissioning at Brookhaven National Laboratory from Monday, March 13th, to Friday, March 17th. An indico page has been created at the link below. Please register in the next several weeks so that we can determine how many rooms need to be reserved.

https://indico.bnl.gov/event/18111/


Joe Osborn

DEC LA36 DECwriter II Terminal Columbia University, 1974

Commissioning Workfest Indico Page

Production Conversion Cables

Delivered	AC-Type	BD-Type
15cm Conversion Cable	56 + (10)	56 + (10)
25cm μ-Coax Harness	48 bundles (1 CC/ROC)	48 bundles (1 CC/ROC)
GND/Power Cables	64 cables (1 CC/ROC)	64 cables (1 CC/ROC)
GND/Power Lock Cover	3	0

New Order Plan	AC-Type	BD-Type
25cm μ-Coax Harness	75 bundles (1.5 CC/ROC)	75 bundles (1.5 CC/ROC)
GND/Power Cables	100 cables (1.5 CC/ROC)	100 cables (1.5 CC/ROC)

- 15 Total Conversion Cables were used so far (~0.5/ROC).
- There are still 0.5/ROC available + additional spares 1.5/ROC.
- Expected delivery on March 3rd or 6th 2023.